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Discrete Ordered Calculus

Tom Etter & Louis H. Kauffman

1 Introduction to the Introduction

We wrote this paper (except for the present intro-
duction to the introduction) in 1994. In the mean-
time the paper [8] by Kauffman and Noyes was
polished and published, including many innova-
tions and discussions that emanated from the origi-
nal handwritten manuscript {7]. A key innovation
came from the work in the until-now unpublished
paper that you are about to read! We (the present
authors) had a happy time trying to find a clean
and consistent way to perform the non-commuta-
tive calculus that is explained below. The present
paper shows an intermediate stage in the evolu-
tion of this idea. In this intermediate stage, we
surround an expression with special
“time-shifting” parentheses, [4], which instruct
the user of this algebra to shift expressions to
the left of the parens by one time step. This al-
lows us to retain an instruction to shift time,
even after we have written out the formula for a
derivative in the calculus. Formally the parens
behave as follows:

All=M"1=[ 14
[AB]=[A]B
AlB] = [AB]

[A+B]=[A]+[B]

Here A’ denotes the “value” of the variable 4 after
one step in time. Note that the empty parenthesis
acts as an operator according to the formula

Al ]1=114"

We observed this and decided to replace the for-
malism of the parens by an operator / correspond-
ing to the empty bracket so that A/ = JA.” This
made the best and simplest solution to the prob-
lem. Furthermore' by writing A'= J AJ, becomes
a formal and discrete time evolution operator. Our
discrete ordered calculus (DOC) became a version
of discretized quantum mechanics' fitting perfectly
with the theme of[8]. On top of this' the discrete
time-evolution fits with the more generalized proba-
bilistic dynamical rules described by Etter in [3].

2 Introduction
The purpose of this short paper is to give a quick
introduction to the discrete ordered calculus devised
by Louis Kauffman and Pierre Noyes in their paper
[7] on the derivation of electromagnetism from the
formalism of quantum mechanics. In fact we im-
prove on this original version of the discrete or-
dered calculus (DOC) by introducing a fundamen-
tal time shifting operator that is distinct from the
time shift associated with a derivative in the origi-
nal calculus. These remarks will be clarified below.
We are excited by the prospects of this discrete
ordered calculus exactly because it reproduces the
formal properties of Newton's calculus in a discrete
setting,

3 A Discrete Ordered Calculus
Recall the calculus of discrete differences. Let

DX=X-X




define the discrete derivative of a variable X whose
successive values in discrete time are

XX XX" ...

We can proceed to do calculus in this realm. An
early exercise reveals the formula
DXY) = XD(Y) + DIX)Y.
Proof.
DXY) =XV -XY=XY-XY+ XY~ XY
=X(Y'-Y)+ X' -X)Y=XD) + DXY.

The ke‘y point is that this formula is different
from the usual formula in Newtonian calculus
by the time shift of X to X' in the first term. In
{7] the authors undertake to correct this discrep-
ancy in the calculus of finite differences by tak-
ing the derivative D as an instruction to shift the
time to its left. That is, they take XD(Y) quite
literally as first find DY, then find the value of X.
In order to find D(Y) the clock must advance
one notch. Therefore X has advanced to X' and
we have that the evaluation of XD(Y) is

X(Y-Y)

In order to keep track of this non-commutative
time-shifting, we shall write D(X) = [X'— X] where
the bracket [ ] is a special time-shifter satisfying
the properties

ALT=[4] =1 4"
[AB] = [A]B
AlB] = [4'B]

[A4+ B] =[4] + [B]

The time-shifte r acts to automatically evaluate
expressions in this non-commutative calculus of fi-
nite differences that we call DOC. The key result is
the adjusted formula:

D(XY) = XD(Y) + DIX)Y.

Proof.

DXY) = [XY'-XY] = [XY- XY + XY~ XY
=XV-Y+ X'-X01 =X (Y-Y) + [(X'-XY]
=X[(Y'= V)] + [(X'= X)]Y = XD(Y) + YD(X).

The upshot is that DOC behaves formally like in-
finitesimal calculus and can be used as a founda-
tion for discrete physics. In [7] Pierre Noyes and
Louis Kauffman use this foundation to build a deri-
vation of electromagnetism from the formalism of
quantum mechanics. DOC is suitable for symbolic
computation and can even be used to keep track of
the myriad time shifts in the classical calculus of
finite differences.

4 Imaginary Comment
It is interesting to note that the basic property of
the time shifter, [ ], is the equation

A= 14"

This puts the time shifter in line with the way in
which imaginary quantities are introduced into
non-commutative algebra. For example we go to
the quaternions from the complex numbers

Z=A+Bi
by introducing a new operator / such that
Z] =]z

where Z'= A-Bi is the complex conjugate of Z. This
is a formal correspondence, but it deserves further
exploration.

In fact the full generalization lives in the Cayley
multiplication where the rule is

(A + BIJ)(C + DJ) = (AC—~DB) + (BC'+ DA) ].

That is, we have A,B,C,D are elements of a possi-
bly non-commutative algebra and (XY)'= YX In
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this context, the new imaginary element / satisfies
the equations
ye1,
XJ=JX',
A(B])= (BA)],
(AJ)B = (AB)].
(A))(BJ) = —BA.

The operator J performs almost all the different shifts
thar algebra allows. / causes products to reverse their
orders and conjugations to take place. It is a remark-
able fact that the rule for Cayley multiplication that
we have shown generates the complex numbers from
the real numbers, the quaternions from the complexes
and the octonions from the quaternions. There the
process stops. Each system loses some properties of its
predecessor. The complex numbers are not ordered.
The quaternions are not commutative. The octonions
are not associative. And the algebra at the next stage
collapses utterly.

Is this not very like the way the levels of the
combinatorial hierarchy [2] come to an end? We
suggest deeper explorations of this parallel in the
context of the structure of time.
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The Abandonment of

Simultaneity
Pierre Noyes

Some recent investigations in linguistics, communication, and social

organization have found that progress can be made only by abandoning

the concept of simultaneity in favor of a multi-component hierarchical

description of overlapping times. It is suggested that the same approach

might offer a clue to the solution of the problem of joining relativity

theory to quantum mechanics which has resisted more conventional ap-

proaches for forty years.

Although the atomic hypothesis that phenom-
ena can be analyzed into discrete elements with fixed
properties has proved enormously fruitful in many
different sciences, it conceals a fundamental para-
dox. If the atoms so isolated are in fact indepen-
dent of their surroundings, how is it possible for
them to influence those surroundings? This prob-
lem is already present with the hard impenetrable
material atoms of Democritus, who insisted that
there are only atoms and the void, and that all phe-
nomena reduce to the collisions of these atoms. It
was learned during the nineteenth century that one
can, in fact, explain the relation between pressure,
temperature, and volume of a gas with such a model,
up to a point, but this is a far cry from explaining
sounds and colors as experienced by human minds.
Thus the atomic hypothesis taken literally produces

a dichotomy between mind and matter, primary
and secondary qualities, and so on, with which
philosophers have struggled from time to time with-
out resolving.

Up to a point, the quantum mechanical de-
scription of the structure of matter gets around these
difficulties in an ingenious way.! It starts (at the
level of description which first concerns us) with a
system of electrons and nuclei with fixed and stable
properties, but because of the uncertainty principle,
asserts that we are unable to predict anything more
than probability distributions for these particles.
Thus an isolated hydrogen atom consists of one
proton and one electron, and if we observe it in
such a way as to locate these particles, we will find
only the two particles named. However, the loca-
tions of the particles will differ from hydrogen atom
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to hydrogen atom, even though hydrogen atoms,
interacting in ways that do not allow the localiza-
tion of the particles, behave in identical ways. This
is accounted for in the theory by calculating a prob-
ability distribution for the electron in the hydro-
gen atom, and showing that, to about | part in 137,
we will get the correct answer in such cases if we
treat the charge of the electron, not as a point, but
as if it were smeared out into this probability distri-
bution. Thus, even though the theory in a sense is
built on point particles, it also is capable of a de-
scription which looks like an extended structure in
space.

With this understanding, we can, to a certain
approximation, talk about a hydrogen atom in its
ground state as having a spherically symmetric
charge distribution, the radius of the sphere being
about 0.5 x 108 cm in length. If two hydrogen at-
oms join together to form a hydrogen molecule,
however, this charge distribution does not remain
spherical. It forms an elongated structure with
rounded ends. At rather accurately defined posi-
tions along the axis of this structure, it is possible
to make measurements which will localize one or
the other of the two protons, or both of them, and
within the extended charge cloud one can, by suit-
able measurement, localize either or both of the two
electrons. Thus quantum mechanics allows changes
in the effective structure of atoms when they join
to form molecules, even though the constituent elec-
trons and nuclei retain their particulate character.
In this way, one aspect of the atomic decomposi-
tion is retained, while at the same time allowing
the actual spatial structure of the atoms to change
with the molecules in which they are embedded.
Similarly the structure of the molecules will be al-
tered by whether they are in free space or sur-
rounded by other atoms of a liquid. Ultimately,

then, there will be subtle differences (according to
the theory) depending on whether the molecule is
in a muscle fibre or in a brain, what the species of
the organism is, and what its past history has been.
Thus there is no hiatus or barrier as one extends
the chain of hierarchical organization upward. It is
this subtlety of description which is at the root of
the considerable success which molecular biology
has had in accounting for the mechanism of life.

Of course the chain does not stop there. As
Polanyi has pointed out in a recent article,? this
molecular biological description, no matter how
complete, still does not account for the purposeful
aspects of life. To give explanation for these, we must
extend our universe of discourse to include the evo-
lutionary processes which through natural selection
have fitted the gene pool of the species to the envi-
ronment and interlocked the different species into
ecological systems. Ultimately this description must
extend backward in time over the full 4% billion
years the earth has existed and include the steps by
which self-replicating systems developed from
non-living matter. Even so we are still not up to the
level of discussing consciousness, which involves not
only the neural currents in the brains of individu-
als, but the processes of learning by which they be-
come associated with distinguishable aspects of the
surroundings, and the social organizational struc-
tures without which these learning processes could
not exist, and which shape them.

Clearly the whole explanatory process sketched
above is far from complete at the present time, but
there is no longer a logical reason why it cannot be
continually expanded in scope and power as we
learn more of molecular biology, neural structures,
and intercommunicating social organizations. It also
can be extended to a level of analysis below that of
the electrons and nuclei showing that these too have
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structure which is subtly influenced by their
surroundings. This comes about because of the com-
bined effect of the £ = mc? mass-energy equiva-
lence of the special theory of relativity and the
Heisenberg uncertainty relation F 6t>#% (where
# is Planck’s constant divided by 2m). Since mas-
sive particles must move at speeds less than ¢, the
velocity of light, in a time interval 67 they can move
only distances shorter than r = ¢dz. If we attempt

to localize a particle within this distance r, the un--

certainty principle tells us that there will be an un-
certainty in energy at least as large as  #/5¢ = #e/r.
But if 7 is less than #/mc this uncertainty is greater
than mc?, which then tells us that within distances
B/mc of any particle it will be possible (i.e. with
some finite calculable probability) to find an addi-
tional particle of mass 7. In the particular case of
electrons, since these carry electric charge, the ap-
pearance of a single electron would violate the law
of conservation of charge, but within a distance of
#/2m,c, we can expect to find a (negative) electron
of mass m> together with a positron (positively
charged electron), also of mass m.. Putting in the
numbers this tells us that any particle which inter-
acts with electrons will be surrounded by some prob-
ability distribution of electron-positron pairs of ra-
dius about 2 x 10°'"" e¢m. Thus, once we include
relativity, particles themselves have extended
charge-current distributions, and since these in turn
can interact, they will be affected by the structures
in which they are embedded. Hence, in principle,
even the electrons and nuclear particles in the brain
of one man differ in their space-time distributions
from those in the brain of another. These effects
can be calculated for an isolated hydrogen atom
(Lamb shift, vacuum polarization, etc.) and are in
agreement with experiment to high accuracy. Hence,
if we look closely enough, even the particles of which

the atomic and molecular distributions are com-
posed themselves dissolve into modifiable structures
and all the structures in the universe are ultimately
interlocked and interdependent, leaving no un-
bridgeable gap.

~ Unfortunately, this same line of reasoning leads
to a new paradox. Since we can find an
electron-positron pair within %#/2m ¢, we could find
two such pairs within %#/4m ¢, three such pairs within
#/6m ¢, and so on. The smaller the scale on which
we attempt a space-time description of the struc-
ture of particle charge-current (or mass) distribu-
tions, the larger the number of particles we encoun-
ter, and this number grows without limit. Dirac
began struggling with the infinities this simple fact
introduced into the theory nearly 40 years ago, and
neither he nor succeeding generations of theoreti-
cal physicists have come up with a satisfactory reso-
lution of the paradox, though we keep trying. In
some cases it has proved possible to sweep these
difficulties under the rug and come up with suc-
cessful predictions which have been confirmed ex-
perimentally, but the basic paradox remains unre-
solved. As many people have realized, starting at
least as early as Bohr and Rosenfeld’ in 1933, the
basic problem is that the special theory of relativity
relies on an underlying space-time of points. Al-
though the simultaneity of two events which can-
not be connected by a light signal is arbitrary, and
when using the Einstein convention for removing
the arbitrariness, depends on the motion of the co-
ordinate system, this relative simultaneity still al-
lows a unique ordering of events and an arbitrarily
precise punctiform localization of any space-time
event. Hence, once this basic space is married to
mass-energy equivalence and the uncertainty prin-
ciple, infinite energy fluctuations at each of these
points are inevitable and the mathematical consis
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tency of the theory collapses. Attempts have been
made to avoid this difficulty by giving a granular
structure to space-time, or by other modifications
of the theory at short distances which still allow it
to reduce to the special theory of relativity in the
macroscopic world. So far these have not com-
manded much enthusiasm in the community of
theoretical physicists, and have not led to any strik-
ing successes. It therefore might be worthwhile to
at least look at efforts in other sciences to struggle
out of the straight jacket imposed by a punctiform
and unique space-time description to a description
which is more in accord with the requirements of
their data.

This possibility was suggested to me in a con-
versation with R. L. Birdwhistell, J. H. Crook, and
K. L. Pike, at the Center for Advanced Study in the
Behavioral Sciences. Birdwhistell has been strug-
gling for many years with kinesic aspects of com-
munication—that is behavior such as the eye-blink,
head motion, eye focus, leg cross, etc., which ac-
company and often replace verbalizing. He could
make little progress so long as he was hung up with
the telecommunicative model derived from infor-
mation theory — two individuals exchanging in-
formation back and forth along some channel in a
uniquely ordered segmental time sequence. But a
remark of Infeld’s about the relativity of simultane-
ity freed him from this necessity and allowed him
to start seeing the data as an overlapping laminated
structure (i.e. multi-layered segments in which each
layer is made up of pieces of finite size, and the
joins between pieces do not necessarily cross the
layers) of events of varying lengths occurring along
many channels; some of these units may be only a
few milliseconds in length while other aspects of
the communicative process may extend over four
generations, and unitary events of any intermedi-

ate length also occur. This makes it clear that the
“information” described in the information theory
model for communication can only be interchanged
along this limited channel because of an enormous
amount of social work preceding and succeeding
this brief flow; one need only think of how diffi-
cult it is to enable children within a uniform cul-
ture to learn from a printed page, let alone to trans-
mit this skill trans-culturally, to realize the force of
this description. To use another analogy, commu-
nication starts with the installation of the phone
system and not with the ringing of the bell; this
fact should be obvious to the parent of any teen-
ager who has sat by a silent phone. One point to be
empbhasized is that by focusing attention on the flow
of information in the lexical channel, one not only
looses important aspects of the situation, but makes
it next to impossible to see the higher units of the
hierarchical laminated structure; these are just as
real as any of the shorter units, and may often be
much more significant.

Working with the linguistic channel itself, Pikes
has come to a very similar structural picture. We
are familiar in written English with the segmental
decomposition into letters, words, sentences, para-
graphs, and so on to higher units, but only trained
linguists are familiar with the difficulties of recov-
ering these structures from any particular example
of spoken English, let alone making the equivalent
analytic decomposition of spoken languages of dif-
ferent structure. A little reflection on the profound
phonetic changes which occur in the speech of a
child as it grows up, in voice tone of the same indi-
vidual under various settings, or at various times
during even the same speech, should convince the
reader that the atoms of verbal communication are
not unique physical structures with a defined dis-
tribution of frequencies and intensities occurring
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during a precisely defined interval of segmental
rime. Rather, they are a complicated hierarchical
ordering of laminated relationships in which the
units are subtly modified by these rc].atiunships.
Otherwise it would be impossible to turn on a ra-
dio in the middle of a speech and realize almost
immediately that a preacher is nearing the end of
his sermon, or an orator building up to his perora-
tion, as we obviously can. Again, the analysis of
speech into segmental units successfully prevents
the recovery of highly significant structural aspects
of the ongoing process, and a multi-component
analysis such as that which Pike uses is essential.
Field studies of the social structure of primare
societies such as those being conducted by Crook®
again reveal laminated hierarchical structured rela-
tionships rather than atomic encounters berween
individuals. For instance, among the Gelada ba-
boons, the special relarionships berween all-male
gl'D‘l.lFlS H.I'IEI tI'IE harv:m g[ﬂUFS DF duminant male
PI'I.J.E FE'.ITIH'.CE ﬂ.l'ld. }"CIL'I.I]E changc t]‘:mugh D‘r’fr].ﬂp'
ping patterns from day to night and from season to
season in ways that have an intimate connection
with the exploitation of the available food supply,
and hence are of fundamental evolutionary adap-
tive significance. These changes in both space and
time are only very incompletely understood when
the community is followed for only a year, even
though the year contains the full range of seasonal
variation. Equally significant is the way in which
these relationships change as individuals mature and
g;.r'ﬂw DI'EI ﬂﬂd. how th-E HEEESSIT}" accompan}rfng
changes in relationship are structured into the so-
cial organization. Clearly, these can only be guessed
ar until communities have been followed for gen-
erations, and this work is only beginning. The point
to seize on here is that all this structure is missed
if the data are viewed in terms of single seg-

mental encounters rather than in larger units.
Clearly this rich material from the behavioral
sciences can only be hinted at in an arricle of this
length. It has taken the three individuals named
above many years to come to this way of seeing
their data, and there is by no means unanimity
among anthropologists, linguists, or ethologists as
to the importance of this type of approach. Bur it
does appear significant that by abandoning simul-
tancity and punctiform units as a method of de-
scription,” significant new relationships become
possible to observe. Unfortunately, the mathemari-
cal structures needed to give precision to this ap-
proach are yet to be worked our. The general area
of mathematics in which to look is obviously set
theory, as was realized long ago by von Neumann®
in discussing economic behavior, or the axiomaric
field theorists? in trying to come to grips with the
infinities arising from the coupling of relativity and
quantum mechanics. But it still seems to be beyond
the current level of mathematical sophistication to
go from a description in terms of overlapping sets,
which does seem appropriate to the data, to a dy-
namical theory which would allow predictions as
to how the relationships between these sets evolve
in time. In the old punctiform theories, dynamics
is supplied by equations of motion written in terms
of rates of change (differential equations); but these
necessarily imply a continuous background space
of points.'? Since it is clear simultaneiry and punc-
tiform space must be abandoned,!! this might im-
ply that something equivalent to the calculus, but
operating on the laminated set structure rather than
on space-time, must be invented.!> One purpose
of this paper is to point up this necessity; unfortu-
nately my own mathematical talents are too lim-
ited to see how to proceed further than pointing
out the problem. A second purpose is to point out
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the similarity of structure between the problems of
kinesics, linguistics, primate social organization, and
elementary particle physics; this implies thar ad-
vances in any one of these fields can offer fruicful
suggestions for new insights into the others.
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ematical background. Other approaches to the
problem of infinities introduce a granular
structure fo space-time, again avoiding the

punctiform limit.

12. An alternative approach to the problem of

infinities is the “bootstrap” theory in which
every particle in the universe generates every
other particle, and the universe exists because
this is the only self-consistent solution to the
equations. This is acausality with a vengeance,
and even one of the proponents of the (in-
soluble) theory questions whether it can be
considered a “scientific” idea (G. F. Chew,
Science 161, 762 (1968)). The lack of alrer-
nate solutions to the "true” one makes the
issuc of dynamical equarions which determine
the evolution of different systems starting with

different condirions at some point irrelevant, O
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To Hell with Education

A Denunciation of Scholasticism in Science

With Apologies to C.S. Lewis” “The Screwtape Letters’
By Viv Pope

Reprinted from The Mewsletter of ANPA, 16, Spring 1996, ANPA International, Cambridge, UK.

Once there dashed into hell a young devil, to tell
Some news he could scarcely contain.

“There's been a disaster!” he called to the Master;
I fear all our work is in vain!’

Drawled Satan: ‘Keep cool, you imperuous fool.
I find such excitement uncouth!”

‘But Dad,’ cried the lad, ‘this really is bad.
Mankind’s found a great bag of Truth!

' stayed hid,” he said, ‘as the pieces were spread
All jigsaw-like, there on the table.

And some, in a bit, tried the pieces to fit

As skillfully as they were able.’

‘So what?’ drawled Old Nick, ‘Do you seriously think
Such a trifle deserves my attention?

This knowledge they've found, I'll bet you a pound.
Will never become comprehension!”

The lad was astonished. ‘But Dad,” he admonished,
“This news ought to make us suspicious!

We surely decline to let truth Divine

Mar lgnorance cruly perditious!’

‘Relax!” said his Pa, ‘It will not get them far.

In me you can place your reliance.’

‘How so?" asked the boy. The sage said, "My ploy
Is to ler all that Truth become Science.’

‘I am not satisfied,” young Nicky replied,

“T'his answer of yours is surprising!”

“Then listen, dear youth. For each one who loves truth
There are thousands who love organizing.

‘It happens like this: at first it is bliss

To pick pieces our of the pile

And find where they fir, at the chair where you sit
At the table. Then, after a while,

“The bits you abort, by others are sought

To fit where those others are seared.

And soon, as the spaces between all those places
Are filled, so the aim is defeated.

‘I’s like this, my son. Though it’s barely begun,
The project must end in frustration.

Because, by this time, the whole “pantomime”
Is wrapped-up in Administration. :

“Their trouble, you see, is that though truth is free,
They don't see my hellish perversity.

By evil intent I've let them invent,

What aspiranes call “university”.

*This makes the poor fools establish new rules
So marvelously diabolical

That scholars, for fees, can pursue “Ph.D.s"
For purposes non-philosophical.
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‘Departments are named and probably famed
With sole occupation to forge reputation
For knowledge both full and exacr.

‘In this way they save all the truth-bits thar they've
Pur together by efforts intense.
Bur the toral of which {and here is the hitch)

Can make no overall sense.

‘Mow you and | know that the best way to go

To restore the rate of advance

Is withdraw the stricture on keeping each “picrure”
Where placed by its first circumstance.

“To move chunks around is the plan that is sound
Till they fir beyond any question.
Bur guardians of knowledge ensconced in each college

Can contemplate no such suggestion.

“There's no way,” they'll say, "such a plan to obey
In keeping with scholarly puriry.

In Disciplines tight we maintain our righe

To our places, our pay and securiry.

* “It must never appear that we interfere
In areas controlled by our peers.
We say, and with pride, that we're 'not qualified’

In matters outside our own spheres.”

"So these institutions, by circumlocurions,
The aim of the game they are changing.
There are gaps where no bit can possibly fit
While the puzzle resists rearranging.

“In those gaps they neglect, we neatly inject,
For their aims now wholly sophistical,

Owur Hellish infusion of sheer illusion

And fancies entirely mystical.

“They casily make the fatal mistake

Of thinking the form ineluctable.

And thus we ensure, by methods secure,
That Truth is no longer constructable.

"You see, then, my son, how our evil is done,

Mo martter how mankind has toiled

Or what it has cost them, true Wisdom is lost them.
And that is how Goodness is foiled.’
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Boolean Geometry and
Non-boolean Change

(Paper given at ANPA 16, Cambridge, England, Sept. 1994)

By Tom Etter

Pr%zce

The following paper was the basis for my talk at ANPA 16. At the time I believed its basic idea to be original,
a belief supported by a number of knowledgeable readers. However, I subsequently learned that this idea, which
! called Boolean geometry, was actually around as early as the 19305 Having never quite made it into the
mainstream of logic, it was reinvented not only by me but by several others, including Gordon Pask and, |
believe, Gian-Carlo Rota - the full history here remains to be uncovered. However, the connection I made to
negative quantum amplitudes does appear to be new, so my plan became to revise the paper into a larger work
in which this connection is developed in detail. This larger work has indeed become larger! What was to be
only an introductory section on link states turned into my 90-page [|GS paper, followed by a series of sharter
papers on the same topic, and I'm afraid the grand synthesis of link theory and Boolean geometry is still only a
sketch. Thus it seems like a good idea to go ahead and release this paper in its present unfinished state. Like the
DOC paper, it a historical record, and also I believe that it not a bad introduction to its subject, which could
well be of interest to other investigators of “strange” logics. TE 1996

Abstract

Von MNeumann showed that quantum observables
with eigenvalues 0 and 1 can be interpreted as
propositions about the outcome of measurement.
When two such observables commute, their prod-
uct as operators is their conjunction as propositions,
i.e. PQ means (PAND ()). However, since (P AND
Q) = (QAND P), this cannot be true if Pand @ don'’t
commute. For such propositions, von Neumann de-
fined AND in a new way, which led to new non-Boal-
ean laws for AND, OR and NOT; the resulting non-

Boolean “logic” was called quantum logic.

Quantum logic was a dismal flop, and is all
but forgotten roday.

But the logical issues raised by von Neumann's
deep insight into the meaning of eigenvalues 0 and
1 are as alive today as ever. What are we to make
of propaositions that don't commute? To put it an-
other way, why is it that sometimes we can't say “P
and (", taking "and” in its usual sense? Though
these question arose in physics, they don't belong
to physics; they're not about matter in mortion but
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about propasitions.

MNon-commuting quantum propositions are
always asserted from different “viewpoints”, i.e.
their eigenvectors belong to different bases in Hil-
bert space. When we can't say “Pand (0", it's be-
cause P is true or false here, while @ can only be
true or false true after we move to there. Taken at
face value, this tells us not that Boolean logic is
wrong but that it is relative. "AND” only jumps
the Boolean track when we move our logical van-
tage point. The adjective “non-Boolean” is misap-
plied to logic - what it really applies to is change!

Whar, if anything, is invariant under non-
Boolean change? In the present paper | explore the
thesis that, however we may experience this con-
stancy, mathematically speaking it is the connectiv-
ity of the Boolean lattice stripped of its arrows. This
mathematical structure, which | call Boole space, is
isomorphic to the undirected edge graph of the
Euclidean hypercube. Given Pascal’s logical defi-
nition of probability as the number of favorable
cases divided by the total number of cases, this weak-
ening of Boolean algebra to Boolean geometry turns
out to be mathemarically equivalent to generaliz-
ing probability so that it can go negative as well as
positive. The result is a hidden variable theory that
specializes to quantum mechanics as a simple large-
number case. OF course the hidden variables here
are highly non-classical; their invisibility is not just
de-facto but logical, and they are not only hidden
from the classical observer but from each other!

CHAPTER 1
lllogic, Pre- logic and Logic
Early in the cwentieth century, at a time when sci-

entific idols were toppling right and left, even logic
itself began to totrer. “If Euclidean geometry has

fallen, which according to Kant is so built into hu-
man reason that it's humanly impossible to ratio-
nally doubt it, then why is Boolean logic still stand-
ing?” So asked the spirit of the times, and so asked
von Neumann when in the 1930%, in trying to
clarify Bohr’s notion of complementarity, he pro-
posed his so-called guantum logic.

Quantum logic art first attracred an enthusias-
ticand distinguished following. Bur, some 60 lack-
luster years later, even its best-known advocate has
declared it to be a flop. Why did quantum logic
fail? There were no mistakes in von Neumann's
mathematics, but it turned our to be strangely ster-
ile. It produced nort a single empirical prediction,
and wasn't even helpful in making caleulations. Not
surprisingly, most physicists have turned away from
logic altogether.

This is unfortunate. The powerful winds of
change that were felt by pioneers like Bohr and Pauli
were not just about calculating the radiation spec-
tra of atoms. The really new thing in quantum
mechanics is a very general idea, superposition, and
superposition makes sense in any context whatso-
ever that presents us with a range of alternatives,
never mind alternarives for what. Physicists, though
they may claim to disdain logic, make unabashed
use of this generality. For instance, they assume
without hesitation that it makes sense to speak of
the superposition of alternative topologies. But
what would you call the theory that tells them they
can do that! I don't know its name, but I'd cer-
tainly call it some kind of logic.

Among those of us who still do call it some
kind of logic, the common wisdom is that we must
continue the search for alternatives to Boolean logic.
I believe that this is wrong and that the common
wisdom here has overlooked the obvious,

There’s nothing at all odd or non-Boolean
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abourt logic in quantum mechanics so long as we
Stﬂ}" wil‘hin a context whcrc one measurement
doesn't disturb another, i.e. within a single set of
commuting observables. We can also freely move
our ordinary Boolean logic to any other such con-
text. It's only when we try to combine statements
from different contexts that problems arise. Con-
text sensitivity is of course very familiar in everyday
life - think of statements about left and right. What
the quantum logicians seem to have overlooked is
the possibility that it’s the context sensitivity of logic
that is causing all the trouble. Why do we need a new
kind of logic? Perhaps ordinary logic is not wrong,
bur just relative!

How do we explore this hypothesis? The ap-
proach that works well for spatial relativity is to
start with relative descriptions and extract from
them a certain absolute or invarians part. For in-
stance, you can start with “X is to the left of Y and
Y is to the left of Z” and extract the weaker invari-
ant statement Y 15 berween X and 27, a starement
that remains true under reversal of left and righe.
Thart's close to the sore of thing we're going 1o do
here. However, in one respect our enterprise has
no precedent. In all pre-quantum theories of rela-
tivity the job has been to find a system of invariant
statements. But we are looking for something a licdle
different, which is an invariant way to legically com-
bine statements.

Actually, the same thing could be said about
von Neumann's quantum logic. How the present
approach diverges from quantum logic, to putitin
a nutshell, is that it does not seek a competitor o
Boolean logic with differens laws, but an objectifi-
cation of Boolean logic with weaker laws. 1 shall
call the first illogic, the second pre-logic.

The particular pre-logic that I shall describe
here is what | call Boolean geometry. Von Neumann

compared his non-Boolean logic to non-Euclidean
gecometry. By way of contrast, the present approach
can be more accurately compared to Euclidean
geometry. To see whar this means, let’s indulge
in a fantasy.

Imagine that it was not Eudlid but Descartes
who in 300 BC invented the definitive mathemar-
ics of space. Since Descartes was an egocentric fel-
low, Cartesian geometry was centered on his own
person, and all points of space were designated by
their distance from his navel taken in three direc-
tions: left/right, front/ back, and above/below. This
was a wonderfully practical system when Descartes
was sedentary, but it got a bit confusing when he
was moving about. The problem seemed to be
solved by his death, but grave robbers kept reviving
it. Nevertheless, the system persisted for almost
two thousand years until Euclid came up with his
grear theory of relativity. This theory solved once
and for all the problem of Descartes’ peregrinations
by completely doing away with the idea of a Carte-
sian center, putting a Cartesian clone at every point
of space! Note thar Eudid’s is not an alternative
geometry. It doesn't contradict the viewpoint of
the wandering Descartes, but weakens it by abstract-
ing only what it shares with its clones.

For Descartes substirute Boole. Our new logi-
cal geometry is to Boolean algebra what Euclidean
geometry is to Cartesian geometry. Indeed, as we
shall see, a Boolean logic is literally a coordinare sps-
temn on a Boolean geometry. Starring with Boolean
logic, we can define Boolean geometry as the in-
variant structure under a new group of transforma-
tions that gransbate the Boolean origin (Boolean ).
In geometry a translation is a congruence transfor-
marion that takes lines into parallel lines. We shall
define the concepr of parallelin Boolean algebra by
saying that the line x,y is parallel to the line xy"iff
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(x XOR ) = (x’ XOR y), where XOR is exclusive
OR. Given this definition, we can move the con-
cept of geometric translation into logic word-for-
word! All this will become clear in chapters 3 and
4; for now I just want to stress again how different
Boolean geometry is from quantum logic, whose
symmetry group bears an entirely different relation-
ship to Boolean algebra.

To summarize: The laws of logic are not wrong.
Indeed, without these laws, these Boolean laws, it
would make no sense to speak of laws of any kind.
The problem is that we have been using Boolean
logic too egocentrically. It is only after we become
aware that there is more than one Boolean view-
point and begin to study transformations of view-
point that the fundamental meaning of quantum
superposition becomes clear.

This may sound like a soothing message: there’s
a technical fix for all this weird logic stuff that turns
it into science as usual. However, let me end here
with a word of warning: When you mess around
with logic, you mess around with how you think!
Lobotomy may be a routine procedure for a brain
surgeon, but not when he performs it on himself!

CHAPTER 2
Boolean Logic.

2.1. Boolean algebras

In this paper I will be treating Boolean geometry as
something abstracted from Boolean algebra; as
mentioned, this is like treating Euclidean geometry
as something abstracted from a system of Cartesian
coordinates. For space it seems more natural to go
the other way, since our everyday experience of space
involves a constantly moving origin. But for logic,
I don't see how we can go the other way., What s

our everyday experience of a moving Boolean ori-
gin, of a moving nothingness?

This is actually a fascinating question, and one
that can start you reflecting about all sorts of things:
crearion and annihilation, virtuality, Bergson’s du-
ration, the Hegelian dialectic between being and
not-being, Jacob Boehme’s un-ground, Heraclitus
vs. Parmenides - there’s a call of the wild here that
echoes down through the ages.

Unfortunately we haven't yet found the con-
cepts that can connect this kind of speculative re-
flection to empirical science, and so I believe it’s
better to begin with concepts that have securely
made this connection, namely with AND, OR and
NOT. In this chapter I shall set the stage for Bool-
ean geometry by reviewing some familiar aspects
of Boolean algebra and introducing some others that
may not be so familiar.

A Boolean algebra is a collection of objects, its
elements, on which there are certain operators AND,
OR, NOT etc. that satisfy certain rules. It’s usual to
introduce these rules by means of certain axioms.
That would be irrelevant here, though, since we are
only concerned with finite Boolean algebras, and
the mathematical structure of a finite Boolean al-
gebra is quite transparent to common sense; it is
simply the structure of the set of all subsets of a
finite set. We will use this fact to freely go back
and forth between logical and set-theoretic termi-
nology, which will make it easier to visualize some
of our new concepts. Let’s remind ourselves of how
the two kinds of terminology correspond:

The INTERSECTION of x and y is the subset
of all things that are both in x AND in y. Welll
abbreviate INTERSECTION | AND by “&”.

The UNION of x and y is the set of all things
that are either in x OR in y. We'll abbreviate
UNION | OR by “”.
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The COMPLEMENT of x is the set of all things
that are NOT in x. We'll abbreviate COMPLE-
MENT by “-7.

Most of the time we'll be dealing with Boolean
algebras whose elements are subsets of some explic-
itly given finite set S. The members of § are called
the atoms of that Boolean algebra, and the number
of these atoms is called the dimension of the Bool-
ean algebra. Here, as in everyday life, we won
distinguish a set with one member from that mem-
ber itself, so atoms, as one-member subsets of S,
are also elements of the Boolean algebra. § iuself is
of course an element; it’s called the universal ele-
ment and is abbreviated 7. The null set is also an
element, abbreviated 0. We italicize 0 and I to
distinguish them from numerical 0 and 1.

2.2. Boolean logics

A Boolean logic, as I shall be using the term, is de-
fined as the Boolean algebra of subsets of a set S of
mutually exclusive possibilities, i.e. of cases. Think
of S asa menu. It’s usual in the restaurant business
to number the items in a menu so we can point to
them by their indices: “Hey, one #5 special coming
up!” Let 7 be a menu index that ranges, say, from 1
to 10. Let S be the set of all items on the menu.
Then, roughly speaking, the Boolean logic of S is
the set of all the things we can say about 7, for
instance 4>3".

This last statement needs to be carefully quali-
fied. Taken out of context, ‘7>3” could mean al-
most anything. It could be about the ratio of the
circummference to the diameter of a circle, or about
the number of dimensions of space-time, or it could
tell us that the customer is not ordering Hamburger
Supreme or Heavenly Chicken or Fisherman’s De-
light. To discriminate among these possible mes-
sages, we must first know the answers to two ques-

tions: What values does 7 take? and what alterna-
tives do these values point to? Given this essential
background, it makes sense to ask what informa-
tion does >3 ” supply?

The elements of a Boolean logic are often repre-
sented by sentences or sets of indices, but what they
are is items of information, taking that term in
Shannon’s sense 4s the narrowing of a range of pos-
sibilities. My use of the word “logic”, which is also
von Neumann’s, is rather different from what you
find in most textbooks on logic, which are largely
concerned with formalizing the science of inference.
Logic in this textbook sense has almost nothing to
do with our present subject matter, and a case could
be made for our using some other term such as
“Boolean informational structure”. However,
“logic” is a pretty flexible word, spanning the gamut
from Hegel’s dialectic to logic gates, and since von
Neumann’s use of it has already taken root in the
foundations of physics community, we'll stick with
“Boolean logics”.

To recapitulate: An item of information is de-
fined as a selected subset of a fixed set C of cases. A
boolean logic is defined as the set of all items of in-
formation on C structured by the set operators
INTERSECTION, UNION and COMPLE-
MENT etc.

2.3. Projections

Information has another aspect which is not cap-
tured by Shannon’s definition: It accumulates, and
as it accumulates, the act of acquiring each new item
of information alters all the others. Consider our
example of the item 7>3. Taken by itself, this places
i in the range 4,5,6,7,8,9,10. But suppose we had
already learned that 7<8. Then in Shannon’s terms,
>3 is a different item of information, since now it
confines i to the range 4,5,6,7 against a background
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of an § thar includes only the first eight members
of the original 5.

To put it another way, an item of information
is not just a subser, it is an gperator on its Boolean
logic. The item of information p, as an operator,
takes every element x into pdix. We'll adopt the
convention of using capital letters for operators and
small letters for their operands, so we can write this
as P(x) = p&x. P is a projection operator in the
sense that it is idempotent (PP = P) and it pre-
serves a certain algebraic structure - we'll see just
what this structure is later. This projective charac-
ter of information is important to us here for two
interrelated reasons: First, it tells us something about
why propositions are represented by projections in
quantum mechanics, and second, it makes it pos-
sible to extend the definition of information so that
it still makes sense in Boolean geometry, as we'll see
in Chapter 3.

In everything we do we make in one way or
another an important distinction berween informa-
tion of two kinds: first there is informartion that
applies only to a particular occasion or event, and
then there is information thar applies to a whole
group of occasions, or is a fixed aspect of a chang-
ing object. There are many different words for this
contrast. [n natural science we speak of data vs.
regularities, of boundary conditions vs. laws. In
computer science it’s input and memory vs. pro-
gram. In everyday life we have events vs. rules, ac-
tivity vs. condition or status, accident vs. order etc.
The concept of “state” straddles the boundary; a
state is something that tends to persist unless it is
“forced” or “induced” ro change by something out-
side of itself.

The concept of projection most naturally ap-
plies to the second kind of informartion. Typically

when we encounter an object we imagine a large

range of nominal passibilities for it, most of which
are not realistic. Narrowing down this nominal set
S to a realistic set C is the kind of informarion that
we call a principle. Since a new item of data is most
commonly expressed in terms of S, it is can be very
useful to understand how a principle projects data
onto C, since this tells us something abour how
changing data bears on the state of the object as a
whole. Indeed, understanding such a projection is
just what we ordinarily mean when we say we un-
derstand the principle of the thing. We'll pick up
this train of though again in section 7.

2.4, The Boolean lattice

There are a number of ways to characterize the struc-
ture of a finite Boolean algebra. We've done it here
by giving that structure a canonical representation,
so-to-speak, as the set of all subsets of a finirte set.
A useful variation on this is to identify the Boolean
elements with bir strings which represent the char-
acteristic functions on these subsets. There is a third
quite different kind of representation, though,
which is important for studying Boolean geom-
etry, and that is the Boolean lattice.

Thinking of the Boolean elements as sets, the
Boolean lattice is the partial ordering of these sets
by inclusion. We'll write this relation as x<) mean-
ing that every element of x is an element of y. In
logic, if all x5 are yi we say that x implies , so the
logical name for < is implication. We must be care-
ful not to confuse this relation of implication with
the Boolean operator -xVy which is sometimes
called material implication. The two are closely re-
lated, though, since x<y iff -xVy = 1. Also we must
not confuse it with the concepr of deductibiliry,
which is a meraconcept that occurs in the study of
formal languages.

Here is a picture of the relation > for a 3-atom
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Boolean logic; x<yif you can follow the arrows from
X o }'.

abc
ab g be
b
a C
0

ﬁg 2.4.1. The Three-atom Boolean Lattice

Mote that we can define inclusion in terms of &: x
is included in y means that x is the intersecrion of
and y. We can also go backwards from < to &: The
intersection of x and y is the largest set included in
both x and x i.e. the g.L.b. (greatest lower bound)
of x and y under the partial ordering <.

A less obvious fact is thar we can define NOT
in terms of <. First we define 0 as the element that
is included in all others; @ is of course the null set.
MNext, we define “x and y are disjoint” to mean that
xdey = 0 (recall that we have already scen how to
define & in terms of <). Finally we define -x to be
the element that is disjoint from x and that includes
every other element thar is disjoint from x; clearly
~x is the complement of x. (This last step only
works for Boolean lattices. In non-Boolean lattices
like quantum logic, there is more than one maxi-
mal disjoint element, and to define negation re-
quires additional strucrure.)

Here's something that may come as a surprise.
We've seen that we can define = in terms of AND,
and NOT in terms of <, but this means that we can
define NOT in terms of AND! Sounds impossible?
That’s because we're used to algebrarcally generating

the other Boolean operators from AND and NOT,
and we know it can't be done with AND alone.
Whar we've done above, though, is something quite
different, which is to define NOT as an aspect of
the whole structure of the AND operator.

To summarize: The Boolean lattice is a partial
ordering of the elements of a Boolean algebra in
terms of which all of the Boolean operators can be
defined, and conversely, which itself can be defined
in terms of the Boolean operartors; it is thus equiva-
lent to Boolean algebra in the sense that it charac-
terizes the same abstracr structure.

2.5. The Boolean Graph
In fig. 2.4.1 the Boolean lattice is pictured as an
otiented graph, where x<y means you can follow a
path of arrows from x to y. Let’s now look art this
graph as a relation in its own right, which we'll call
arrow. We'll write x — y to mean thar there’s an
arrow from x to y. In the language of sets, x - y
says that y is the result of adding another member
to x. We can define x—+ y in terms of < to mean
that x<yand there’s nothing in between, i.c. for any
z such thar x<z and z<y, either z=x or z=y. Con-
versely, we can define < as the ancestral of arrow,
i.e. the smallest transitive relation containing ar-
row - just what this fancy language means becomes
pretty obvious when you lock at the picture.
Since we can use it to define the Boolean lat-
tice, the Boolean graph is another way to give the
structure of a Boolean algebra. But far more im-
portant, it immediately leads to a simple definition
of the basic object in Boolean geomertry:

Boole space: The un-oriented graph that resules
from stripping a Boolean graph of its arrows.

We'll leave the arrows in place for the rest of
this chapter, but we'll concentrate on those con-
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cepts that still remain important afrer we remove
them. One of these is the concept ofa pad‘l, which
is a series of steps in the Boolean g,raph.

Step: An ordered pair of elements x,y such that
cither x— yor 3= x in the first case we call it a
step up ot a positive step, in the second, a step down
of 4 negative step.

Path: A sequence of elements whose adjacent pairs
are steps. A path from x to y will be notated x..x
Here's a path in the three-atom graph, shown by
the dotted line:

fig 2.5.1 Path from x to y

By the length of a path we mean the number of
steps in it. A geodesic is defined as a path from x to
y of minimum length, and this length is called the
Boolean distance between x and y. It’s easy to see
thar Boolean distance is a metric in the sense thar
Dix,x) = 0, Dx,y) = D(yx), and it satisfies the tri-
angle inequality. Giving this metric is another way
to define Boole space, and in fact that’s how we will
start off defining it in chapter 3. Here is an impor-
tant theorem: The Boolean metric D(x,y) together
with the Boolean origin @ determine the structure
of Boolean algebra. This will be proved in Ch. 4.

A step up adds a new member to an element,
while a step down removes a member. Thus if a
path starts from 0, we can determine the cardinal-

ity of its endpoint by taking the number of steps
up and subtracting the number of steps down. In
the language of finance, the net gain for someone
traversing a certain path is his income along the
way minus his outgo. It may help us remember
what we are doing to use such words as technical
terms:

Income: The number of positive steps in a path.
Outgo: The number of negative steps in a path.

MNet gain:
net(x..y)

Theorem: The net gain of any path x..y from x to y
is the cardinality of y minus the cardinality of x.
More briefly,

net(x..y) = card(y)-card(x)

Income minus Quego, abbreviated

Proof:
We've seen that

net(0..x) = card(x) and net(0..y) = card(y).
Now consider a path 0..y from @ to y which resules
from splicing x..y onto the end of any path 0..x
from 0 to x. Clearly the net of a path is the sum of
the nets of its consecutive parts, so

net(0..y) = net(0..x) + net(x..y)
and hence
card(y) = card(x) + net(x..y),
ie net(x.y) = card(y) - card(x). QED.

Definition: This theorem shows that we can write
net(x,y) for net(x..y).

We'll say thar a path is ascending if all its steps
are positive, descending if they are all negative. A
path that is either ascending or descending will be
called monotone. A monotone path is always a geo-
desic. A geodesic needn't be monotone, however,
unless it starts from 0. The geodesics from O have a

22 ANPA WEST JournaL * VOLUME S1x, NuMmeer ONE



special place in Boolean algebra, since their lengths
are the cardinalities of their upper endpoints.

2.6. Probability

The above discussion of parhs' has been part of
our preparation for a definition of amplitude mod-
eled on Pascalian probability. Recall that Pascal
defined probability as the number of favorable
cases divided by the total number of cases. In our
current terminology, the probability of x is card(x)/
- card(1). In the language of graphs it's the net gain
from 0 to x over the net gain from @ to 7, and it’s
also the distance from 0 to x over the distance from
@ o I. This last statement is purely geometric ex-
cept for singling out a point called @, so let’s adopt
it as the definition of probabiliry.

Probability: probix) = Di%,0)/ Dmax, where Dmax
is the greatest distance between any rwo points.
{note that Dmax is D(1,0), which shows that 7 is
the unique antipode of 0. Dmax is also what we
called the dimension of the Boolean algebra, and it
will turn our literally to be the dimension of the
corresponding Boole space.

Pascal’s definition of probability is a purely
logical definition, and in fact it has its uses in
logic proper. Perhaps the most important of
these is to give us an easy way to define what it
means for two items of information to be logi-
cally separate or independent:x is independent of y
means that

probixdy) = prob(x)prob(y).

We'll see in a lictle while how to define in-
dependence in terms of Boolean factorization.
The concept of independence is of course one
Df the cornersrones l}r science as we knﬁw it.
Will it still make sense after we geometrize logic?

Will science as we know it still be possible?

2.7. Sublogics, factors and Independence

Generally speaking, a suf-structure of 2 mathemati-
cal structure is a subset of its elements together with
the operators and relations that define the struc-
ture of the whole. Here is the basic Boolean sub-
struceure:

Subalgebra: A subset of a Boolean algebra closed
under AND and NOT.

Theorem 2.7.1: The atoms of a subalgebra form a
partition of the atoms of the algebra.

Proof: Let BI be a subalgebra of B. If B, includes
x and 3 it includes -x and x&y Therefore it in-
cludes 0 = x&-xand I = xv-x and x-y = x&-3 Sup-
pose xand yare atoms of B,. Then x and y must be
disjoint, for otherwise one of xdy ot x-y or y=x would
be smaller than either x or 3 contradicting the as-
sumption that x and y are atoms. A similar train of
reasoning shows that every element of 8, is a union
of atoms of B,. But since / is an element of B,, we
conclude that every atom of B is in some atom of
B, QED.

Sublug;ir.: A suba]gcbra ofa logic.

If the state of a (classical) physical object is described
by several variables, each of these variables ranges
over the case set of a sublogic of the state logic.
More generally, any exhaustive set of mutually ex-
clusive properties of the state defines a sublogic.
The relationship of sublogic to logic captures much
of what in everyday life we think of as the relation-
ship of part to whole.

Since Boolean lattices, Boolean graphs, Bool-
ean rings, ctc. are all equivalent to Boolean alge-
bras, it would be reasonable to suppose that sub-
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lattices, sub-rings, sub-graphs etc. are also
subalgebras. Oddly enough, this is not true! Every
subalgebra is a sub-ring (defined as a set closed un-
der AND and exclusive OR) and every subring is a
sub-lattice. However, not every sub-lactice is a sub-
ring, nor is every sub-ring a subalgebra. An impor-
tant substructure that is not a subalgebra is the set
5 of elements of the form pdex that results from a
projection P. §'is closed under OR (union) so, un-
less P=1, it does not include the negations (comple-
ments) of its elements, since x v -x = [, while P
= P. §'isa subring, however, namely that generated
by OR from all the atoms of 5.

How do we characterize the logical relation-
ship berween two objects that have nothing to do
with each other? In order to say anything at all
abour it, we must conceptually bring these objects
into the same universe, which means thar we must
see them as sublogics of the same logic. Then whart?
There is a clear way to proceed if they together gen-
erate all the elements of this common logic:

Generation: We say that a set A of elements gener-
ates a Boolean algebra B if we can obtain every ele-
ment of B by applying AND and NOT to the mem-
bers of A. For instance 5, the set of atoms, gener-
ates its Boolean algebra.

Spanning: Suppose that 8, and B, are sublogics of
8 such thar all of their elements together generate
B; we then say that they span B. If B, and B, are
any two sublogics of B there is a sublogic of Bwhich
we'll call B,&B, that is spanned by B, and B..

Factors: We say that B, and B, are factors of B if
they span B and if 5,&s, is never 0, where s, is an
atom of B, and s, is an atom of B,. More generally,
sublogics 8, B, ..B,. are factors of B if for any 8i,
Band B are factors, where £ is the sublogic spanned
by all the other sublogics.

The concept of factoring captures what it means
to break something into a “heap” of parts, assum-
ing that this is possible. The converse operation, bring-
ing parts together into a heap, will be known as:

Boolean multiplication: Given Boolean logics 8,
and B, over case sets 5, and S, we define their prod-
uct B.B, to be the Boolean logic over the Carte-
sian product of 5, and ;.

Theorem 6.1. Given a product B,.B,, there are
natural isomorphisms of B, and B, onto factors B,
and B, of the product. QED.

Proof: The atoms of the product are the ordered
pairs <x,y.>, where x;is any atom of B, a.nd_y:jis any
atom of B, Define B, as the sublogic whose at-
oms xi are of the form <x,y,> v <x,y,> v <x,y,>
..., and similarly B, with atoms y,. Clearly the
atoms of B,' and B, correspond to those of B, and
B,, all these atoms together span B, and x,dty, is never
0, s0 B, and B, are factors.

Because of these obvious natural isomorphisms,
we'll regard multiplying and factoring as inverse
operations, and we'll speak of a logic as the product
of its factors. The dot notation B,.8, is a close rela-
tive of the dot notation in computer science for
separating fields in labels or addresses (think of an
Internet address). If B, and B, are factors of B,
we'll allow ourselves to write B = B.B8,; in such a
case we have B.B, = B,&B,

Now we come to a crucial theorem. Recall that
we defined independence to mean prob(xd&y) =
probix)prob(y).

Theorem 6.2. x and y are independent in B if and
only if B can be factored into two subalgebras one
of which contains x, the other y.

It's easy to show that elements in different factors
are independent; indeed, this is an immediate cor-
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ollary of the fact that the cardinality of a Cartesian
product is the product of the cardinality of its fac-
tors. Proving the converse is harder, though, and
since the details of the proof are not relevant o
what we're doing here, we won't go into them.

If the elements of one sublogic are indepen-
dent of the elements of another, we say that the
sublogics are independent. A necessary and suf-
ficient condition for chis is thar the atoms of one
are independent of the atoms of the other. This
is the logical meaning of independent variables.
That is, to say that two variables are indepen-
dent means that they range over the case sets of
independent sublogics.

Independent sublogics are factors of the
sublogic thar they span, but they need not be fac-
tors of the whole logic. For a subogic A to qualify
as a factor of a logic B, the atoms of A must be
equiprobable in B. A sublogic that meets this con-
dition will be called separable. Mote that if 4 is
separable, the probabilities defined in B for the el-
ements of A are the same as those defined in A alone,
and if A is all we care about, we can leave B out of
the picture. If 4 is not separable, however, we can-
not use Pascal’s definition on A alone but must also
take B into account. One way to do this without
mentioning B explicitly is to describe the effect of
B in verms of a probability measure.

A measure on a Boolean algebra will be de-
fined as a numerical function on its elements
that adds for mutually exclusive cases. Some
definitions of measure also includes the require-
ment that the numbers be non-negartive, but we’ll
omit this requirement since we’ll soon be study-
ing amplitude measures that can go negative and
complex. A probability measure is a real non-
negartive measure that is 1 for Boolean 1. Pascal’s
definition of probability applied to B defines a

probability measure on each of its sublogics.

The relative frequency interpretation of prob-
abiliry is often presented as a competitor of Pascalian
probability. However, it can be brought under the
Pascalian umbrella by treating a series of trials as a
set of possibilities for this trial. The series then be-
comes the set of cases for the logic B of all state-
ments about which trial is this one, and relative
'FIE q'l.l-Cl'lEY EIDCDITICS a PESCE“E.H measure on a
sublogic 4 whose cases are the possible outcomes
of the trials. If the outcomes are equally frequent,
as with a fair coin toss, then A is separable.

It may seem that all this business about facrors
is laboring the obvious. After all, we all know what
it means for things to have nothing ro do with each
other - why all the fuss? At this point I can only ask
the reader to be patient a little longer. We really do
need a rather abstract approach to familiar ideas
like separateness, connectedness and equality, since
our commonsense intuition about such things turns
out to be a poor guide in the strange new realm of
Boolean geometry.

CHAPTER 3
Boolean Geometry

3.1. Boole space
In section 2.6 we defined Boole space in terms of
the Boolean graph: here we'll start with the Bool-

can metric.

Metric space: A set of points on which there is a
distance function Dix,y) satisfying three axioms:
First, Dfx.x)= @, second Dix,y) = D(32) and third,
Dix,y)+D(yz) is greater than or equal to D(x,z) (the
triangle inequality.)

Boolean Distance: The distance Dix,y) berween two
elements x and y of a Boolean algcbra is defined as
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card(x+y), i.e. the cardinality of x+3 where + means

exclusive OF,

Exclusive OR, or XOR for short, is central to Bool-
ean geometry, o its important to be clear abour its
basic propertics. First, ler’s be clear abour its defi-
nition: x XOR y, abbreviated x+% means (ovy) & —
xdey)

Unlike inclusive OR, exclusive OR is a group
operatdr. Applied ro bit strings, it is bit-by-bit
addition mod 2, which justifies, or ar least ex-
cuses, the symbol “+” for it, Boolean 0 is the
identity of the XOR group, and every element is
its own inverse; the latter property alone char-
acterizes a group as isomorphic to a XOR group.
If we define scalar multiplication by 0 and I by
the rules Ox=0 and Ix = x, the XOR group be-
comes a vector space over the binary field; we'll
call this vector space XOR space. AND distrib-
utes through XOR, so AND and XOR together form
a ring, the so-called Boolean ring. The dual of
XOR is IFF, defined as (xey) v (~xcy).

Theorem 3.1.1. Boolean distance is a metric.
Proof: Since x+x = 0, D{x,x) = 0. Since x+y = y+x,
Dx,y) = Dipx).

To prove the triangle inequality, first note that
Dix,y) is a maximum when x and y are mutually
exclusive, in which case it is card(x)+card(y).

Then note that since y+y = 0, we have

x+2 = (x+p)+(y+z),
showing that D(x,z) = cand(x+z) is at most
card(x+y)+eard(y+x) = Dix,y)+D(32),

which is the triangle inequality.

There are two basic theorems that launch Bool-
ean geometry. Let’s now turn to the first, which is
that that Boole space is homogeneous. To under-

stand what this means and how to prove it, we need
the concepts of congruence, symmetry and displace-

ment.

Congruence: A congruence between two subsets of
ametric space is a 1-1 correspondence between them
that preserves distance.

Symmetry: A self-congruence of a subset is called

a SymrRelry.

Homogeneity: We say that a metric space is homo-
geneous if for any two points x and y there is a
symmetry of the whole space taking x into y.

Displacement: A transformation on Boole space
which for some fixed element d takes every element
x into d+x. Note that this resembles a vecror dis-
placement in ordinary space, and is in fact literally
a vector displacement of the linear algebra we called
AOR space.

Theorem 3.1.2. Displacements are symmetries of
Boole space.

Proof:

Did+x,d+y) = card(x+d+d+y) = card(x+y) = D(xy)

Theorem 3.1.3. Boole space is homogeneous.
Proof: Given any two elements 4 and ¢, we have
(d+e)+d = e so the displacement by d+e takes 4

into e

The second big theorem thar starts things off is that
you can get from the Boole space of a Boolean al-
gebra back to the Boolean algebra itself simply by
saying which point is 0. Since Boole space is ho-
mogeneous, you can choose any other point to be
0 and get another Boolean algebra. The relativiry
of Boolean logic with respect to the choice of ori-
gin is the essential novelty of Boolean geometry,
and in future papers we'll see how it leads to the
relativity of logic in quantum mechanics.
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At this point it will be helpful to consider Boole
space in terms of the Boolean graph as we did in
see section 2.5. Recall that we defined Boole space
there to be the Boolean graph stripped of its ar-
rows. More formally, it is the structure defined by
the set of all unordered pairs of neighboring points
in the graph. Referring to fig. 2.4.1, we see that
such neighbors are the endpoints of the straight lines
in the Boolean cube. This is no accident, and it
will turn out to be a good move to define straight
lines in our geometry to be neighboring pairs. The
definition now will be algebraic:

Line: A straight line, or simply a line, in a Boolean
algebra is a two-element set fx, 3/ such that x+y is
an atom.

We can see that this is clearly the case for the
lines in fig. 2.4.1. The logical meaning there of an
arrow x— y is that y results from adding one more
member o x. To remove the arrowhead means as-
serring the weaker relationship x— yor y—x which
doesn't say which of x and y is included in the other
but merely that they differ by one atom, i.e., that
x+y is an atom. Thus we see that:

Theorem 3.1.4. The two points on a line are neigh-
boring peints on the graph, which means that the
structure of the unoriented graph is given by speci-
fyring the set of lines.

Theorem 3.1.5. A line is a pair of points whose
distance apart is /.

Proof: Ifx+yisan atom then D{xy) = card(x+y) = 1.

The point of stating this obvious theorem is to make
it clear that the concept of line is purely geometric,
i.e. it depends only on the metric and not on other
features of the Boolean algebra.

In non-Euclidean geometry the role of straight
lines is taken over by geodesics. Now we have both

straight lines and geodesics, which in section 2.5
were defined as edge paths containing a minimal
number of steps. We must now see what this means
algebraically:

Path: A sequence of connected lines, i.e. a sequence
points x;such that fx,x+//is a line. Path length is
the number of points minus one.

Geodesicz A shortest path between two points,

Theorem 3.1.6. The length of a geodesic between
xand yis Dixy).

Proof: Consider first the case where x=0. Since
O+y = 3 D(0,3) = card(y). We saw in 2.5 thac
card(y) is the length of any geodesic from @ to
so the theorem is true for x=0. But now sup-
pose we apply a displacement 4, turning our in-
terval into d,d+y. We saw (theorem3.1.2) that
displacements are geometric symmetries, so
D(d,d+y) = D(0,y). But we also saw that lines and
hence paths are peometric concepts, so the short-
est path berween 4 and 4+ has the same length
as the shortest path between 0 and 3 We can
choose d arbitrarily. By letting y = d+z for arbi-
traty z, we can also choose d+y = z arbitrarily.
Thus the theorem holds for any x and y QED.

We now see that our two ways of defining Boole
space agree. If we know the metric Dfx,y) we know
the geodesic distance on the graph and hence the
structure of the (unoriented) graph itself. Con-
versely, if we know the graph, we know its graph
distance and hence D{x,y).

Theorem 3.1.7. Given any point x, and any path,
every step forward in that path either increases the
distance from x by [ or decreases the distance from
x by 1, i.e. there are no side steps.

Proof: The theorem is true for x=0, since distance
from @ is cardinality. It is true of any other point
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since the metric is homogeneous.

Theorem 3.1.8. The structure of a Boolean alge-
bra is given by its metric together with its origin
(Boolean 0).

Proof: The metric defines the unoriented graph
while the origin defines the arrow as the direction
of increasing distance from 0.

As mentioned, it is theorems 3.1.3 and 3.1.8 that
really get us going. These theorems tell us that a
Boolean algebra is a Boole space on which we have
singled out an origin, and that the points all look
alike so any point will do. Theorem 3.1.7 is also
very important, since, as we shall see, it plays a
crucial part in our definition of amplitude.

We started this chapter by defining the Boole
space metric as the number of atoms in x+y. This
of course presupposes a Boolean algebra in which
atoms and + are defined. We then found that by
applying a geometric symmetry we can displace the
origin to any other element and obtain a new Bool-
ean algebra in which this new origin is 0. Since the
atoms are the neighbors of 0, this new 0 defines a new
set of atoms, different from those we counted in de-
fining the distance between x and y. In fact, + in the
new Boolean algebra is also a different operator from
+ in the old one. Nevertheless, since the origin was
shifted by a symmetry of the metric, we know that
the new atom count is the same as the old count.
Shifting the origin not only relativizes atoms and +, it
relativizes all the familiar Boolean operators except
NOT, and it also relativizes inclusion and mutual ex-
clusion. Nevertheless, a surprisingly large part of
Boolean structure remains invariant, and describing
this invariant structure will be our next job.

3.2. Geometric Invariants
What is the full symmetry group of Boole space? It

includes the displacement group, and it of course
includes the symmetry group of Boolean algebra,

which I shall call the logic group.

Theorem 3.2.1 The logic group of a finite Bool-
ean algebra consists of all transformations that re-
sult from permuting the atoms.

Proof: A finite Boolean algebra is isomorphic to
the set of all subsets of its atoms, whose intersec-
tions and complements obviously don’t depend on
how the atoms are arranged, so any permutation of
the atoms will generate a symmetry. Since a logical
symmetry must preserve the Boolean lattice, it must
map neighbors of 0 into neighbors of 0, so the sym-
metries generated by permutations are the only logi-
cal symmetries.

Theorem 3.2.2. The geometric group, i.e. the full
symmetry group of Boole space, is generated by the
logic group and the displacement group in the sense
that every geometric symmetry can be written in
the form DL, where D is a displacement.and L a
logical symmetry.

Proof: Let T be any geometric symmetry of a Bool-
ean algebra B. Let d = T(0). Then by theorems 3.1.3
and 3.1.8, T must map B isomorphically onto the
Boolean algebra B’ whose origin is 4. But the dis-
placement D(x) = d+x also maps B isomorphically
onto B’ Thus the symmetry L = DT is a logical
symmetry on B (recall that D is its own inverse).
We thus have T = DL, the product of a displace-
ment and a logical symmetry. QED.

Theorem 3.2.3 The displacement group is a geo-
metric invariant, i.e. it is a normal subgroup of the
geometric group.

Proof: We must show that for any symmetry T
and any displacement D, 7-/DT is a displacement.
We have seen that we can write 7 in the form EL,
where'E is a displacement and L is logical. Since
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(EL)! = L-'E, we have T"'DT = ['EDEL = L''DL,
so the problem reduces to showing that L-/DL is a
displacement. We have '

L'DL(x) = L''D(L(x)) = L' (d+L(x)).
But since L'! is a logical symmetry, it preserves +
and we have

Ld+L(x) = L (d)+x.

Thus 7 DT is a displacement by L-/(d). QED.

Our aim in this section is to see how much of logic
carries over into Boolean geometry, i.e. to find the
important logical concepts that are geometric in-
variants. Now of course logical concepts are already
invariant under the logic group - they don’t depend
on any particular arrangement of the atoms. Thus
by theorem 3.2.2, to show that a logical concept is
geometrically invariant it is sufficient to show that
it is invariant under displacement. This reasoning
is essentially what undetlies the proof of theorem
3.2.3; displacement is a logical concept and the dis-
placement group is invariant under itself.

The most familiar geometric invariant: is NOT.
NOT is in fact displacement by I, i.e. x = I+x,
which shows that it is invariant. The negation of an
element x is, geometrically speaking, its antipode,
i.e. the point furthest away from x. To see why this
is so, note that the longest possible geodesic is of
length 7, where # is dimension, since each step ina
geodesic must add or take away a different atom.
But a geodesic of length # starting at x must take
away all the atoms in x and add all the atoms not
in x, since there are no other atoms to add or
take away; the result is NOT x. Incidentally,
note that the dimension 7 is a geometric in-
variant, since n is the number of neighbors of
0, and by homogeneity every point has the same
number of neighbors. Let’s now move on to
some important unfamiliar geometric concepts.

Parallel: Two lines {x,5/ and {z,w/ are called paral-
lel if x+y = z+ow.

Theorem 3.2.4. Parallel is a geometric concept.
Proof: Since + is a logical concept, it is sufficient
to notice that a displacement D of two parallel lines
leaves them parallel, i.e.

if x+y = z+w, then dix+y = d+z+w.

abc

fig 3.2.1 Adding Atom b to the Lower Square

Recall that a line is an edge in the Boolean cube.
The arrow on an edge represents adding an atom
to a set. Note that parallel arrows add the same
atom, which agrees with our definition above. This
is no coincidence. It can be shown that the edge
graph of the Euclidean n-cube is the Boolean graph
of an n-atom Boolean algebra, and that the Bool-
ean metric is the square of the Euclidean metric on
the vertices of the n-cube. The Boolean n-cube is
very useful for visualizing definitions, theorems and
proofs in Boolean geometry, and its Euclidean ge-
ometry can be rigorously incorporate into the math-
ematics of Boole space, though we won’t do so here.
However, here is a quick intuitive account of why
the two structures coincide:

The set of parallel edges in a certain direction
connects together two squares to make up the cube
(see fig 3.2.1). The lower square represents the

VoLUME Six, NUMBER ONE °© ANPA WEST JOURNAL 29



Boolean algebra of all subsets of a two member S,
while the upper square represents the new subsets
that result from adding a third member to S. If we
add a fourth member to S, we connect up our cube
to another cube by eight parallel lines in a new di-
mension get a four-dimensional hypercube. We can
keep doing this, which shows that an n-dimensional
" hypercube is a natural representation for an z-atom
Boolean algebra. Note that lines in the cube that
are not parallel are orthogonal. This is true also
in the n-cube, so it makes sense to define or-
thogonality as not being parallel. It’s easy to show
that dimension is the maximum number of or-
thogonal lines.

After this brief side excursion, let’s get back to
parallel lines. What parallel lines have in common
is a particular atom, the atom x+y. Though paral-
lelism is an invariant geometric conceprt, this state-
ment depends on two non-invariant algebraic con-
cepts: atom and +. Let’s now try to think more geo-
metrically. Suppose we choose a particular origin,
call it 0. Then an atom can be defined geometri-
cally as a neighbor of that origin.

Theorem 3.2.5. For any point 4, every line is
parallel to a line of the form f£,x/, and no two lines
of this form are parallel.

Proof: Given a line {fz,w/, we have z+w =
k+(k+z+w), so {k, k+z+wf is a parallel line. If x is
unequal to 3 then k+x is unequal to £+y by the
group property of +.

We see from this theorem that for any point £, an
equivalence class of parallel lines has a canonical
representative as a line connecting £ with a neigh-
bor. This is a geometric way of stating that what
parallel lines have in common is a unit displacement,
something that follows immediately from the defi-
nition of parallel. Looking at fig 3.2.1, we see that

a unit displacement along the dotted lines reverses
the two solid squares, keeping the dotted lines fixed.
On the n-cube, a unit displacement reverses two #-
I cubes, keeping their connecting lines fixed. The
unit displacement is such an important concept that
we will give it a special name:

Step: A displacement of the form A(x) = a+x, where
4 is an atom. :

Theorem 3.2.6. Every displacement is a product
of steps in which no step occurs more than once,
and the set of steps in that product is unique.
Proof: Any element d is a sum of its atoms, so

dx = A+, . +d.. +X.

Thus

D(x) = A, (a2...+x) = A (A2(a3.. +x)) = ect.
= A (A2..(Ai(x)..).

Clearly the ; must include the atoms in 4, and
any other atom would have to occur at least twice

init. QED.

Steps: Define the set steps (D) to be the unique set
of steps that are the factors of displacement D ac-
cording to theorem 3.2.6.

Theorem 3.2.6 tells us that the displacement group
is in natural 1-1 correspondence with the set of all
sets of steps. As the set of all subsets of a set, itisa
Boolean algebra under intersection and comple-
ment. What makes this Boolean algebra so impor-
tant is that it is geometrically invariant! It will be
useful to think of this Boolean algebra as a ring, i.e.
as a set closed under XOR and AND. Recall thata
ring is equivalent to a Boolean algebra, but a sub-
ring need not be a subalgebra.

Displacement ring. The displacement group to-
gether with an AND operator defined as follows:
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D&E is the displacement such that steps(D&E) is
the intersection of steps(D) and steps(E).

Theorem 3.2.7. The displacement ring of a Bool-
ean algebra is isomorphic to the ring of that alge-
bra itself under the mapping D — 4, where D(x) =
d+x.
Proof: D — d maps steps 1-1 onto atoms, so & is
obviously a corresponding operation on the two
rings.

DE(x) = D(e+x) = d+e+x,
which mens that DE ® d+e. QED.

Incidentally, this also shows that the so-called dis-
placement ring actually is a Boolean ring, with +
defined as the group product.

With the geometrically invariant displacement
ring we have arrived at a way to automatically trans-
form any Boolean algebraic concept into a Boolean
geometric concept without having to check it for
invariance. What we have done is almost exactly
analogous to pulling the normed linear algebra of
Euclidean displacements out of Cartesian geometry.
In each case we begin by thinking of the points as
vectors and define a displacement as the addition
of a vector to all points, the only difference being
that Boolean vectors are over the binary field rather
than over the real field. In each case we get to the
full geometric group by combining the displace-
In the
Boolean case, the rotations (which only rotate by
multiples of 90 degrees) and reflections are the per-
mutations of coordinate axes, i.e. the logic group.

ments with the rotations and reflections.

Lifting a Boolean atom from the status of a
mere object d to the status of a displacement D is
to give it an essentially dynamic quality. A step is
an object that is either joining or leaving a set.
Which set? That doesn’t matter; it’s only the bare
fact that the object is coming or going that creates

a step. Which object? That depends on what
other steps have been taken! In the face of a
moving 0, only the fusion of the mercurial ob-
ject with the ephemeral set is something fixed,
invariant, objective.

I now see the logic of the classical observer in
quantum mechanics as a displacement ring on an
underlying “hidden” Boolean underworld of incom-
patible Boolean logics which can only be combined
geometrically. It appears that only by dealing di-
rectly with logics that change can we find a logic
that doesn’t change, a logic that everyone can agree
on and that will serve for the writing of history and
the accumulation of facts.

3.3. Independence

In chapter 2 we asked whether Boolean geometry
is compatible with science as we know it. The issue
is whether, given non-logical geometric change, it
still makes sense to isolate parts of the world from
the general flux. In our present terms, the question
is whether we can find a geometrically invariant
concept of separation that does the same job for
some new science that logical separation, i.e. inde-
pendence, does for present day science.

Logics A and Bare independent if taken together
they form a product logic A.B whose atoms are or-
dered pairs of atoms from A and B. A good way to
visualize this is to think of the atoms of A being ar-
ranged horizontally and those of B vertically so that
their ordered pairs form a rectangular set.

A
LD =

|
Xty

X y
foig 3.3.1 The Separable Element x&y
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Every region of this rectangle is an element of 4. B.
However, the elements of A and the elements of B
are regions of a special kind. An elementof Aisa
vertical stripe, or more exactly, a set of atoms that
can be turned into a vertical stripe by rearranging
the columns. An element of B is a horizontal stripe
in the same sense. An element of the form x&y
with xin A and y in Bis a rectangular region, i.e.a
region that can be turned into a rectangle by rear-
ranging rows and columns; in particular, 1&1 is
the whole rectangle. If an element of A.B is not a
rectangle, i.e. if it cannot be separated into an ele-
ment of A and an element of B, we'll borrow a term
from quantum mechanics and speak of it as en-
tangled.

Let’s now consider what happens when we ap-
ply a geometric transformation G(x) to A.B.

First let’s assume that G'is logical, meaning that
it permutes the joint atoms in the rectangle. To say
that G only applies to 4 means that it only per-
mutes the columns. This has no effect on the set of
aroms in a given row, so the atoms of B are unaf-
fected by G. More generally, a n.a.s.c for G to
preserve the separability of separable elements is that
it only rearranges rows and columns, i.e. that itis a
product of a logical transformation on A and a logical
transformation on B. This is just what common sense
would expect: if two things are independent, chang-
ing them separately can’t make them correlated.

But now suppose that G is a displacement. If
G applies to only one of the components, we
shouldn’t expect it to affect the other, right? Let
G(x) = a+x, where a2 is in A. If we look only at what
G does to the elements of 4, i.e. to the vertical
stripes, then it displaces them just as if B didn’t ex-
ist. B could be on another planet, in another uni-
verse, as far as A is concerned. Thus it seems to be
OK 1o isolate a Boole space from the rest of the

world as an object of study. So far, Boolean geom-
etry is still just another step in the cheerful march of
scientific progress.

But wait just a minute, stop the band! a mes-
senger has just arrived from planet B reporting that
something very odd has happened to the elements
on his planet, which is that they have all become
entangled with the elements on ours! Whart has
happened? Our geometric displacement G, which
seemed to be confined to our 4 logic alone, has
actually zapped his planet and turned every element
y into the inseparable element y+al

T

y +a

L

fig 3.3.2 Displacement of a Applied to y

There is no way to analyze a Boole space into sepa-
rate geometric parts. Separation is simply not a
geometric concept. Unlike the action of a logical
transformation or the action of a projection, the
action of a displacement cannot be broken down
into distinct actions on independent factors. The
reason for this is that any “rectangular” separation
of possibilities still leaves all the parts with a com-
mon null set, a common 0, so a shift in the O of one
part is a shift in the 0 of all!

But before you take off for a Tibetan monas-
tery or banish Boolean geometry to some mystical
netherworld, remember the displacement algebra.
Though it’s a geometric invariant, it’s also a Bool-
ean algebra and as such is factorable like any other
Boolean algebra. Even though the underlying ge-
ometfy has no objective parts, there is at least an
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objective way to take apart an aspect of this geom-
etry. Furthermore, if the geometry acquires a 0,
the factorization of the displacement algebra can
be as-it-were projected onto it. All is not lost to
science after all. .

Of course if the geometry acquires a fixed
origin it simple turns into logic, and the displace-
ment algebra as such becomes irrelevant. What

we're really interested in is the laws governing a
moving origin, which is the likely source of non-
Boolean change in quantum mechanics. The
conceptual framework within which we shall
formulate and study these laws is the displace-
ment algebra, and our main tool in this study
will be the concept of amplitude, which will be
the focus of another paper. ©

Hlustrations:

Cover, Suzanne Bristol, after “Hilltop at High Noon” by Charles

Burchfield.
Page 2, Paul Klee.

Page 12, Suzanne Bristol, after a watercolor sketch of ferns by

Charles Burchfield.
Page 14, Suzanne Bristol.
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Alternative Natural Philosophy Association

Statement of Purpose

. The primary purpose of the Association is to consider coherent models

based on a minimal number of assumptions to bring together areas of
thought and experiencewithin a natural philosophy that is alternative to
the prevailing scientific attitude. The combinatorial hierarchy, as such
a model, will form an initial focus of our discussion.

. This purpose will be pursued by research, conferences, publications,

and any other appropriate means including the foundation of subsidiary
organizations and the support of individuals and groups with the some
objective.

. The association will remain open to new ideas and modes of action -

however suggested - which might serve the primary purpose.

. The Association will seek ways to use its knowledge and facilities for the

benefit of humanity and will try to prevent such knowledge and facilities
being used to the detriment of humanity.
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