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ANPA WEST - Volume Two, Number Three — Fall 1991
Editorial Office: Tom Etter, 409 Leland Avenue, Palo Alto, CA 94306

From the editor.

For those of you who have been wondering what happened to
your interactive ANPA West journal, we're not there yet. INRAC,
the language in which the new journal was to be written, was
created for an earlier generation of computers and needed some
upgrading. We thought this would be a snap, but it wasn't. It's
been like trying to remodel an antique house that has obsolete
plumbing, dangerous wiring, hidden dry rot, irregular dimensions,
and no plans — we finally decided it's a lot easier to just start over.
The new INRAC will be much better, but the delay is frustrating,
most of all to those of us who are eager to use it. Give us six
more months ... ’

In the meantime, things have been happening at ANPA. In
this issue there are two articles presenting some new thoughts on
Spencer-Brown's Laws of Form in relation to quantum mechanics,
plus several short progress reports. Also, please note the
announcement on the previous page of the ANPA West 8 mecting
coming up on Feb. 15.
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The Primary Algebra of Spencer-Brown is Non-Boolean

by Louis H. Kauffman

The purpose of this note is to provide a complement to Tom Etter's
discussion about pre-logic in relation to Laws of Form [E]. | will
show here, that the primary algebra of Laws of Form is not a
Boolean algebra, and how we come to interpret it as Boolean. The
primary algebra becomes Boolean when we adopt a fixed viewpoint
in relation to it. The primary algebra is a precise structure that
underlies the Boolean point of view.

One motivation for this essay is the investigation of what is
common to the development of formal systems. By taking the very
simplest systems of symbols, and submitting them to creative
scrutiny we can begin to see universal patterns. Of course, the
very act of taking a discrete starting point (using written symbols
rather than sound and gesture) biases the endeavor. | suggest that
it is precisely this bias that makes the Boolean or near-Boolean
patterns appear near the beginning. In another essay, | will discuss
how patterns related to quantum logic, quantum theory and special
relativity also appear near the beginning of the development of
formal language. These are the pervasive patterns of our thought,
speech and experience.

At the end of this note | discuss the principle of idemposition
(common boundaries cancel) in relation to both pre-logic and Laws
of Form. There is a common theme, with the realm of formal
idemposition providing a background prior to and more primitive
than the primary arithmetic that underlies Laws of Form.

Now to work. Recall first the primary arithmetic ([S] and [K]). It
is an arithmetic generated by distinctions made in (or of) a given
space. A convenient representation is the plane of writing, with a
rectangle representing one distinction. (Spencer-Brown uses an
abbreviated rectangle, with subtle differences of language. In the
spirit of the present essay these subtle differences are quite
significant. Nevertheless, the use of the rectangle is easy to grasp
as a first pass through this domain.)

ANPA West Volume 2, #2




Rectangles can be placed inside one another

=1

or next to one another

The primary arithmetic is generated by all such drawings of non-
intersecting rectangles

UDDDU.U !

and two rules of operation

1.(Calling)

Cir1 =

2.(Crossing) @ N
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In applying calling, two empty adjacent rectangles can be replaced
by a single rectangle, or a single empty rectangle can be replaced
by two adjacent empty rectangles. In crossing, two nested
rectangles (with no other occupants of the nest) are erased, or
two nested rectangles are produced in a formerly blank space.

Any expression in rectangles can be reduced by applications of
calling and crossing to either an empty space or to a single
rectangle. For example

noolol|—|lclo |-

— Cblank)

It is an interesting to prove that there is no sequence of calls and
crosses taking the empty space to a space with one rectangle. Try
this as a first exercise in Laws of Form!

Some terminology: | shall refer to empty space as the void, to a
space containing one rectangle as a marked space. The
expressions in this arithmetic of rectangles are regarded as
referring to the sides of a distinction that is initially given and
called the first distinction.

The two sides of the first distinction are distinguished, and so we
can choose a mark of distinction (the rectangle) to distinguish
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them, by marking one side of the first distinction with the mark of
distinction.

O

The side with the mark is the marked side. The side without the
mark is the unmarked side. Crossing refers to the act of
changing sides, while calling refers to the act of affirming a given
side.

An expression in rectangles is said to be marked if it reduces to
the marked state, while it is said to be unmarked if it reduces to
the unmarked state. Any expression is either marked or it is
unmarked. The value of an expression is this designation. Thus
the mark itself has the value (i.e. is) marked, while the nest of
two rectangles [@) is unmarked.

If two expressions X and Y have the same value, we shall write
X=Y.

EE .

It is important to understand that this notion of equality refers
only to the value of the expressions, not to their appearance. Thus

8] s [EEo

are distinct expressions of the void.

Thus
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The primary algebra arises at the level of the description of value.
For example here is a first result.

Theorem. For any expression A, AA=A.
Proof. Either A is marked or A is unmarked. If A is marked, then
AA=[0 =0 =A. If A isunmarked, then AA= =A. Thus, AA=A

in every case. QED

Proofs of algebraic identities are rather easy at this stage. Here

is another one:
- A

| leave the proof to the reader. We have made a real transition
into algebra here. If A is an expression in rectangles, then so is
the result of drawing a box around A. Thus "boxing" becomes a
new operation in the algebra.

You can then check many algebraic identities, by seeing that they
are true about the arithmetic:

@ | =
Ellc =|za ]

[°]

3
—
I
&
—
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=
I
3

=

This algebra is called the primary algebra of Laws of Form.

The primary algebra is so close to being a Boolean algebra that it
requires some fine tuning to make the distinction.
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Recall one version of Boolean algebra: A Boolean algebra B is a
set with two binary operations + and x, one unary operation '
(@' is the result of applying the unary operation to a.), and two
distinguished elements 0 and 1 such that 0'=1 and 1'=0. The
operations + and x are commutative and associative. The binary
operation has order two: a"=a for any a.  Other properties hold
such as

0. a+b = (a'+b’)' forany ab in B.

1. a+a' =1 for any ain B.

2. (a+b)xc = (axc +bxc) for any a,b,c in B.

These properties, are not minimal (e.g. you can deduce a"=a from

the other properties given above). They do suffice as a definition
of a Boolean algebra.

We can translate primary algebra into Boolean algebra by the
dictionary:

where the expressions on the left are in the primary algebra, and
the expressions on the right are in Boolean language. We also have
to introduce parentheses in the Boolean format, where they were
not needed in the primary format. For example

‘@ C <« (a’-\—b')/‘i- C.

This need for extra parentheses arises from the fact that the
rectangle itself acts as a parenthesis in the primary algebra.

10
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Another difference concerns the translation of the unmarked state.
It might seem that there is an ambiguity since any blank can be
regarded as two blanks or even infinitely many blanks! Should we
include these extra blanks as copies of 0 in the translation to
Boolean algbra?! Obviously not, but this means that we have to
decide that an entirely blank space will translate as 0, and
otherwise we do not do it For example

[ «» o =4

[Ole» o'=0 « [g[-d'=0

This matter of the void is very important. In the primary aigebra
the notation is set up so that it is quite natural to have empty
spaces in the notation. Many rectangles have empty insides, and
the unmarked plane is itself an expression of the void. The
primary algebra speaks about the patterns of calling and crossing
in relation to a first distinction. These patterns are imaged in a
language of distinctions (the rectangles) that resonates with the
original idea of inside/outside for a first distinction.

Translation to Boolean algebra involves fixing of notation for the
unmarked state, and the introduction of other distinctions (the
parenthesizations) that come in the wake of insisting on a
specific name for the void.

Thus | say that the primary algebra is not a Boolean algebra.
Boolean algebra is a interpretive form for the primary algebra, but
the primary algebra is not Boolean. In a Boolean algebra there are
more distinctions, and in particular the unary operator is distinct
from a value in the algebra. In the primary algebra the unary
operator acting on the void is identical to the marked state, and
this is directly present in the notation.

The primary algebra is to Boolean algebra as the smile of the
Cheshire cat is to the cat.

Exclusive Or

As the pre-logic of Tom Etter is based on the structures generated
by exclusive or, it is worthwhile looking at the formation of
exclusive or in the primary algebra. Let A#B denote the
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exclusive or of A and B. We have AB as the usual OR in the primary

algebra, and can write

AR = |A1B||AE] |

Whence exclusive or (EXOR) is given by the formula

A%B = [[A1B]

AE]D|

In these terms the operation of crossing is given by

Al= HB «» 445

Thus EXOR generates the operation of complementation.

In fact, it is worth looking briefly at the Venn diagrammatic
interpretation of EXOR. If a distinction is indicated by a shaded
area in the Venn diagram, then we adopt the rule that

superimposed shadings cancel.

%\*‘:m\\\
)\ # | @

D

-
- )

The result of superimposing two Venn diagrams is then their EXOR:

ajal

| ED

12
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i €6
And of course the act of superimposing B~ with A reverses the
colors, producing the complement! (Here the mark is regarded as
the shading of the entire universe.)

| GTIg o

It is clear from Venn diagrammatics that the operation

EXOR is really closer to the original spirit of Laws of Form than
the later Boolean rules that appear at the level of the primary
algebra. Thus we could say (as Tom has suggested) that Laws of
Form is generated, or passes through a pre-logical region that is
not yet Boolean. It is not yet Boolean in an even simpler sense
than the non-Boolean nature of the primary algebra. This very
early non-Boolean world is susceptible to a rich field of
interpretations.  This interpretive structure deserves to be
compared with quantum logic.

I will not discuss quantum logic here, but it should be emphasized
that we are discussing the translation and unification of different
languages, where the most condensed language is subject to a
multiplicity of interpretations in the more sophisticated complex
languages that surround it. Properties of such translations are

ANPA West Volume 2, #2
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very similar to the properties of translation from worlds of
quantum mechanical events to the worlds of macroscopic
observation.

Oshins [0O] has suggested that quantum logic is a model for
processes of learning and experiencing that we undergo in growing
up, and that the internal structure of human thought follows
patterns of quantum mechanics. We do not acquire the ability to
consciously create formal systems until rather late. This points to
the fact that we are creating a drastic oversimplification when
we, as adults, attempt to write what appear to be very simple
formal systems. These systems are inevitably pervaded by our
entire learning experience, just as a single word of English needs a
knowledge of the whole English language to be properly understood.

Idemposition

The principle of idemposition is due to Max Aintree [A]. It states
that common boundaries cancel. In order to illustrate the
principle we need some common boundaries. Therefore consider
interacting plane curves that share a bit of boundary either in the
form of a crossing , or in the form of a bounce (see below).

I CcvYosS
! l Lou.nre__,
Following the principle of idempositon, we find

<

"7\" Jr(L’L"\ AL

f
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In particular, we see that the principle generates instances of both calling and crossing:

By allowing a primitive underlying idea of local action (at the boundary), the principle
of idemposition generates patterns for the arithmetic of Laws of Form. The
arithmetic of Laws of Form is obtained by freezing and selecting two particular forms
of idemposition (calling and crossing), and allowing them to act at a distance. The
result is the illusion of absolute clarity of distinction.

Idemposition and Exclusive Or
Idemposition is a form of EXOR, since it partakes precisely of the pattern of
cancellation of common colors. The colors are transposed to the boundary.

Conclusion
In conclusion, | invite the reader to reconsider the structure of any domain of
discourse in regard to its primary distinctions. There are extraordinary realms just

beneath the surface of our thought and speech.
References
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Addendum

The primary algebra is a formal algebra or expression algebra.
That is, | am considering the elements of the algebra to be the
different expressions composed of boxes and symbols, modulo only
the background equivalences obtained by shifting the boxes and
symbols in the plane without crossing any boundaries.

We have adopted the equals sign to indicate that expressions have
the .same vaue, even though they may be distinct.

All of this can be formalized by using the notion of an equivalence
relation, and pointing out that at the beginning we have two
equivalence relations, one generated by the simple equivalence of
expressions, and the other generated by value. The curious thing is
that we do reach an end to this process of articulation of
equivalence relations, and this end has to do with notational
convention.

An equivalence relation is defined upon a given set of elements.

In order to articulate an equivalence relation, we must specify the
set under consideration. The set of rectangles drawn notationally
in the plane is specified only notationally, unless - we wish to
regard the plane as a mathematical plane , and speak of rectangles
via coordinates. If the rectangles are simply (!) notation, then we
know the rules for their specification only through an
understanding of the conventions. Since we are concerned with
providing a non-circular foundation to this matthematics, we are
constrained to rest upon convention and notation sooner or later.

This matter of the notation is usually taken for granted because we
either use very standard notation such as letters and signs from
printed English, or we very explicitly state the conventions for
using new language. Thus the usual notion of a formal system
consists in giving the elements of the language, the rules for
combining these elements, and rules of operation and

transformation of the resulting expressions. This is the domain of
modern logic.

16
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Rather than saying that the primary algebra is non-Boolean, we
could have said that it is a formal domain (expression algebra)
with a Boolean interpretation. Because the now-taken-to-be-
standard form of Boolean algebra (with its given distinction
between unary operator and values in the algebra) is distinct from
the primary algebra, we can see this distinction as meaningful. In
Boole's day, the distinction would have been less clear.

Expression algebras occur in other areas of mathematics. A good
example is the algebra of combinatorial group theory where the
groups are defined by generators and relations. Here the group
itself is taken to be the quotient under the equivalence relation
generated by the group axioms. The empty word occus in this
context, but can always be represented by the symbol 1, standing
for its equivalence class.  Another example is the diagrammatic
theory of knots and links. Here the expressions are the diagrams
themselves

These diagrams are notation in the system. Since this is topology,
the rules of transformation are motivated by topological and
geometrical concerns. In recent years (See [K].) there has been
sucess in relating knot theory to statistical mechanics and
quantum field theory. A significant part of this relationship
derives from the idea of superimposing an abstract tensor diagram
on the link diagram, and thereby making a direct connection with
techniques in statistical mechanics. The tensor diagrams express
formal amplitudes in quantum mechanics, and these amplittudes

ANPA West Volume 2, #2
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can be used to calculate topological invariants of the knots and
links.

af o\ [ be See =84 gi pe
& Ly M@LM&J Re-&- Ra_k R,,_a" A@}A o
(U )L 4,5 b a;\ b —ab
@ K.
c;\d<H>R¢J /\4 R d

c

&> Mab 4w<e> /"(“.L
a b

I think that we are just beginning to become conscious of the
power and creativity involved in the use and evolution of
diagrammatic formal systems.

[K] L.H. Kauffman. Knots and Physics. World Scientific Pub.
(1991)

18
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ARE THE
LAWS OF FORM
NON-BOOLEAN?

by Tom Etter

In my first attempt

at this article I plunged -~
recklessly ahead into the thicket (/:
where Spencer-Brown had the courage to
precede me. After reading Lou Kauffman's responsc,
I reformulated my thoughts. Kauffman's excellent exposition
of Spenser-Brown basics precedes this article. If you haven't read this essay, please
do so before proceeding further. And pay close attention! It's simple, but subtle.

As you have now learned from Kauffman, in the Spenser-Brown arithmetical there
are two binary operations on squares, calling and crossing, represented by juxtaposition
and enclosure respectively. When we go from arithmetic to algebra, we write the
calling operator by juxtaposing variables, for instance XY. But how do we write the
binary crossing operator in terms of variables? We would have to enclose one variable
in another, a neat trick if you can do it! Alas, you can't; in Spenser—Brown algebra,
crossing is only a unary operation, like negation. 1 hadn't realized this when I wrote
my original paper, in which the "primary algebra" had a binary crossing operator
which does make sense in a linear notation, as we shall soon sce.
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If the essence of Laws of Form is the enclosure notation for crossing then I would
have to agrec with Eddic Oshins [O] that it is hopelessly Boolecan and therefore not
very relevant to quantum mechanics. My linear notation, which leads to a non-
Boolean logic very similar to quantum logic, would then have to be called something
clsc. Indccd, what 1 am going to present here is in some respect very different from
the Laws of Form, since my primary algebra takes crossing as its only primitive —
calling comes in later as a defined concept. However, I'm not willing to resign from
the Laws of Form club quite yet, since it was Spenser-Brown's mysterious law of
crossing, "To recross is not to have crossed", that got me started in my new, if perhaps
heretical, direction. The only way I could see to make literal sense of this seemingly
paradoxical law was to use homogeneous variables (sec below), which is what revealed
the quantum-like stage that logic must go through in its evolution from pure negation
to Boolean classicism.

But I am getting ahcad of my story.
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PART I. QUANTUM LOGIC.

Since I'll be presenting a variant of what von Neumann called quantum logic,
let's first look at the original. There are many detailed and rigorous accounts of
quantum logic in print, S0 my account here will be broad and informal.

Quantum logic isn't logic in the ordinary sense of the word; it's not about how
to reason correctly, but about the role of words like AND, OR and NOT in what we

say about what we observe.

Let's start not with quantum phenomena but with ordinary objects. Take a
chessboard, for instance. Looking at a chessboard, we say things like "There's a
bishop on square 3,5.", "Both queens are still on the board", "No queen has been
taken yet" etc. Notice that the last two statements express quite different ideas, but
nevertheless give the same information about the state of the board, taking that
word in Shannon's sense as a narrowing of the range of possibilities. Such
statements will be called equivalent, and we'll say that equivalent statements express
the same proposition. The operation of AND, OR and NOT on these propositions
is what will be called the logic of the chessboard.

A statement conveys an idea. A proposition is the choice made by an idea at a
place. A logic is the joining, disjoining and negating of choices at a place.

Since propositions are equivalence classes of statements, it's important to keep
in mind Kauffman's distinction between the two basic kinds of equivalence, as
presented in the addendum of [K]. To quote: ".. at the beginning we have two
equivalence relations, one generated by the simple equivalence of expressions, and
the other generated by value." I shall use different symbols for these two relations:
The equal sign "=" will stand for what Kauffman calls background equivalence,
while value or foreground equivalence will be shown by a double equal sign, "==".

The essential difference between the two is this: With background equivalence,
more commonly known as equality, the equivalence classes themselves are the
objects of our attention. Often we don't even notice the individuality of their
members, whose role is to present, or to represent, some single thing they all share.
Foreground equivalence, on the other hand, is a relation between things whose
differences are important to our subject matter. Take, for instance, the relation of
topological equivalence among Kauffman's knot diagrams; on the one hand, we
must remain aware of the differences between diagrams in making connections to
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other branches of mathcmatics like tensor theory, while on the other hand, it's their
sameness that concerns us when it comes to grasping the concept of knot.

The notation "==" is a reminder that we are dealing with two things that are
onc. Wc'll write it's ncgation as "=\=".

Background/forcground here is of course a shifting boundary. Kauffman gives
us good examples of the forward progress of this boundary in the direction of
greater abstraction. Sometimes we need to move backward, though, to pull "="
apart into "==" and look scparatcly at several things that were perhaps too hastily
merged into one. Such is very much the case with propositions in quantum

mechanics.

Let's stay with the chessboard a bit longer. Suppose the white queen is off the
board. There arc many ways to say this: "The white queen is off the board", "I
don't sce a white queen”, "I'm sorry to say that your queen is gone" "If you look,
you'll realize that your qucen isn't there", "Horowitz is spelled with a 'w', and
you've lost your queen” etc. Here we have various pieces of information about the
queen, the board, secing, rcalizing, possibly looking, and Horowitz. But in the
context of the states of the chessboard, and assuming we see correctly, all these
statements are true of exactly the same set of states. This means, according to our
definition, that we must regard them all as cxpressing the same proposition.

We allow oursclves these casually interchangeable forms of expression in
everyday life sccurc in our faith that the facts are indeed the facts, and will not be
altered by how we look at them. But suppose we literally looked daggers at them!
In the case of the chessboard, our daggers would send the pieces flying in all
dircctions, and the differences among what is, what is seen, what would be been
seen or seen again ctc. could not be so casually ignored.

Because we have a long direct experience of the states of everyday objects like
the chessboard, it seems natural when we reflect on measurement and its logic to
start out with states. But we have no such direct experience of quantum states. If,
as all the evidence suggests, quantum states would unavoidably be altered by
mcasurcment, then it becomes problematical to speak about quantum states at all.
But without statcs, what becomes of propositions? If a proposition is the choice
made by an idca, what does the idea choose? Without states, what is information?
Quantum mechanics forces us to take such questions seriously.

As cmpiricists our safest course is not to postulate quantum states but to start
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to start, that is, with quantum observation and define quantum propositions and
states in terms of observation as best we can. Here's how this is done in von
Neumann's Hilbert space approach.

Let the notation A.S mean a statement S about the outcome of a quantum
measurement A.

Von Neumann Equivalence. Given measurements A and B, A.S == B.T will be
defined as meaning that if we were to measure A and then measure B, S would be
true if and only if T were true.

Quantum Proposition: An equivalence class under von Neumann equivalence.

Notice how far we have come from our first encounter with the chessboard,
where we abstracted propositions from statements about the actual board. "If we
were to measure A and B" is a variation of "Once upon a time we measured A and
B". In the name of empiricism, we have erected the edifice of physical fact upon
the ground of fiction! Even our equivalence itself is a fiction: "Once upon a time
we measured A and then measured B, and because A came out S, B came out T,
and vice versa". Of course our fictions are designed to be not only plausible but
instructive, which is why we call them science rather than science fiction.

Von Neumann equivalence does in fact live up to its name as an equivalence
relation. Here's what this means for observation:

Reflexive law. If we measure AA, i.e. if we measure A and then immediately
measure A again, both measurements always yield the same result; this implies that
for any S,

AS == AS.

Symmetric law. It doesn't matter whether we measure AB or BA in dctermining
equivalences, i.e. if AS == B.T then B.T == AS.

Transitive law. The indirect equivalences of the form A.S == C.T that can be
inferred by measuring AB and BC are also the direct equivalences revealed by
measuring AC.

Quantum logic is the logic of quantum propositions. More exactly, it is the set
of all quantum propositions about a given quantum object as structured by the
Boolean operators AND, OR and NOT. The singular term "quantum logic" has
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become well established, but it carrics a misleading connotation of there being one
logic where it is morc accurate to say that there are many. The quantum
propositions fall into many classes, each of which is a Boolean logic; let's call them
Boolean frames. These various Boolean frames overlap, and the pattern of their
overlaps is what defines the global structure called quantum logic. Von Neumann
tricd to extend AND and OR into non-Boolean global operators, but this proved to
be a mistake. AND and OR are essentially Boolean concepts. It's just that in the
uantum rcalm there is a different AND and OR in every frame, just as there is a

different RIGHT and LEFT in every spatial frame.

There are two important things to know about quantum logic: first, it's not
Boolcan, and sccond, it's the corc of quantum mechanics as a theory. Let's take

them in order.

Think of Boolcan frames as flat picces of paper, and quantum logic as a paper
house made by gluing the frames together, where the glue is von Neumann
equivalence. The question arises whether it's possible to flatten such a house
without tearing it. For quantum logic, this means interpreting all of its frames as
sub-algebras of a single Boolcan algebra without severing any of the von Neumann
equivalence bonds between frames, and the answer is no. The word sub-algebra
herc can be interpreted in several ways, so let me use another:

Factor. A subsct of a Boolean algebra B is called a factor of B if it is itself a
Boolcan algebra under the same operators.

To say that quantum logic is non-Boolean is to say that all of its frames cannot
be factors of a singlc frame, consistent with the global (interframe) von Neumann
cquivalence relation. This is an important point for hidden variable theory, which
trics to interpret quantum mechanics within a single frame. Granted that a such an
interpretation requires tcaring or separating some frames, might this be done in an
orderly way, as when we flatten the Earth into a Mercator projection? The answer
would seem to be no, since it turns out that there are very simple sub—structures of
quantum logic that can't be flattened (see appendix) and these are distributed
throughout the whole structure, which can thus only be flattened by ripping it to
shreds. Any way you cut it, hidden variables are a mess.

A bricf aside about non-locality: A flat Earth has at least one bad non-
locality, since when you sail off the East edge you instantly appear at the West
edge. The so-called non-localitics of Bell's thcorem come from our unconsciously
regarding quantum logic as flat, which leads us to substitute some fantasied causal
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mechanism for the equivalence bonds we have inadvertently severed by flattening it.

Now we come to the second point. [ regard the core of quantum mechanics as
the Born probability rule together with unitary dynamics. There is a remarkable
theorem by Gleason that in essence deduces the Born rule from the structure of
quantum logic alone. What this theorem shows is that if we assign a probability
distribution to every frame, and if these distributions are consistent between frames
in the sense that equivalent statements always have the same probability, then they
must satisfy Born's rule for some state in a uniquely defined Hilbert space. It's then
as easy step to show that Schrodinger's equation, in its most general form, is
equivalent to quantum logic rotating at a steady rate with the passage of time.

We've seen that quantum logic isn't flat; now we see that it's round!

In conclusion, I would like to give a capsule summary of the mathematical
structure of quantum logic that will tie it to the quantum-like logic of Laws of
Form.

Let's confine our attention to those frames that are not proper factors of other
frames; such a frame will be called complete. A complete frame is sometimes
referred to as a complete set of commuting obscrvables. Define an atom of a frame
to be a proposition which is as informative as possible. For instance, in the logic of
a numeric state variable x, "x=3" would be an atom, since nothing else you could
say about x would add any more information. An atom of chessboard logic is a
complete specification of the state of the chessboard. An atom of a quantum frame
is a pure quantum state.

Clearly every proposition in a logic is a disjunction of its atoms. If we arrange
the atoms in a linear order, then we can represent every proposition by a bit string,
where the 1 atoms are in the disjunction, the 0 atoms out. Let's write these bit
strings as the diagonals of matrices whose off-diagonal elements are all 0's. Note
that the conjunction P&Q then becomes the matrix product PQ, and negation is the
complement 1-P, (1 is the identity matrix) with the 0's and 1's in the diagonal
reversed. Thus our diagonal bit string notation enables us to represent the logic of
the frame within matrix algebra. This is true of any Boolean algebra, not just
quantum frames. :

Suppose a proposition is common to two frames. In general, its matrices in the
two frames will be different. How are these two matrices related? Now we come
to the heart of the matter.
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Equivalence law. There cxists a Hilbert space H such that every proposition matrix
represents an ortho-projection operator on H, and two such matrices are equivalent
if and only if they represent the same projection. (footnote 1)

This cquivalence law cffectively determines the mathematical structurc of
quantum logic, which can be succinctly defined as the set of all ortho~projections
on a Hilbert space together with the operators PQ and 1-P. In general, the product
PQ is not a projection, so PQ as an opcrator in quantum logic is only defined for
certain pairs of propositions. The criterion for PQ to be a projection is that PQ =
QP (footnotc 2). Whenever PQ is defined it represents conjunction in some
Boolean frame, while 1-P always rcpresents negation. Thus a Boolean frame is a
set of ortho—projections closed under PQ and 1-P; a complete frame is a Boolean
frame that is not a proper subsct of any other Boolean frame, or to put it another
way, it's a maximal sct of commuting ortho—projections.

e
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PART 2. PRIMARY THEORY.

I. The Primary Arithmetic.

Let's now turn to our linear variant of Laws of Form. Unlike Spenser-Brown's
Laws of Form, our primary algebra is based on crossing alone; calling enters the
picture as a defined symbol. Like Spenser—Brown, we start with a single mark
symbol; ours is "0". An expression will be any string of zeroes, including the null
string. We'll use all three equal signs, "=", "==" and ":=" to make statements about
expressions. There is one axiom:

The Law of Cancellation. 00 == the null string

Definition of Arithmetical Equivalence. Two expressions are called equivalent if
each can be derived from the other by applying the law of cancellation. Since
every expression reduces to either 0 or the null string, there are just two
equivalence classes or values.

Let's now introduce some new symbols by definition. A definition is a decision
to let a new symbol express what is already expressed by an old one, so a defined
term is not only equivalent to what it replaces, but equal to it. We shall use the
computer symbol ":=" to declare this equality.

Definition of the Unit. 1 := 00

Here are some examples of equality and equivalence: 00 = 1, 10 = 000, 010 =
0000, 000 == 0, 010 == 00, 111 == 1. The multiplication table for 0 and 1 is a
mixture of equalities and equivalences:

00 = 1 01 ==
10 == 11 p=td

We'll call this the primary arithmetic. 1f we interpret 1 as truth and 0 as
falsehood, it's the truth table of the Boolean operator IFF. Let's now define a new

symbol "®" having the truth table of EXOR (exclusive OR), the Boolecan dual
of IFF.
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Definition of EXOR. For any expressions X and Y, X®Y := 0XY

This definition is ambiguous if there is more than one "®"; for instance, is
X@YDZ equal to 0X0YZ or to 00XYZ? We'll resolve this ambiguity by assuming
that the left scope of @ is always the beginning of the expression, so the second is
correct: X®YDZ = 00XYZ. Of course, X®OYDZ is equivalent to both 0X0YZ and

00XYZ.

What follows will be intuitively clearer if we work mostly with EXOR rather
than IFF. Here is thc multiplication (truth) table of EXOR, as one can quickly
confirm from its definition.

0@0 == 0@1 ==
180 == 1®1 ==

II. The Primary Algebra.

Let's now push arithmetical equivalence into the background. This means that
arithmetical expressions arc now only pointers to their values; we no longer care
how they point, just where. Our two valucs will now be denoted by their shortest
non-null expressions, 0 and 1. We will of course now write "=" where above we

wrote "==",

Expressions in 0 and 1 are constants; algebra begins with variables. By an
expression will now be meant a string consisting of 0's, 1's ®@'s and variables. We'll
use small letters for variables, capitals for unspecificd expressions. We must keep
in mind that these capital letters are not themselves expressions as we are now
using that term; rather, they belong to our informal metadomain of language about

expressions.
Algebraic equivalence is defined by the:

Law of Algebra. For any expressions X and Y, X ==Y if and only if any
substitution of constants for all of the variables in X and Y makes them into equal

constant expressions.

This rule plus the primary arithmetic lead to the following two theorems:
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Cancellation Theorem. XX == 1.

Proof: Any substitution of constants for the variables in X will give both
occurrences of X the same value. Thus XX will reduce to either 00 or 11, which
both reduce to 1.

Reordering Theorem. XY == YX. (proof similar)
The familiar method of truth tables is a reliable way to use the law of algebra

to prove simple equivalences. For instance, to prove the reordering theorem we
might write:

=
<
>
<
i
I
<
>
N

0O 0} 1 == 1

0O 1} 0== 0

1 0} 0== 0

1 1) 1 == 1

_____ S
H yes!

With the above two theorems plus the rules of arithmetic we can reduce any expression
to an expression in which no variable occurs more than once, the variables occur in
alphabetical order, the first character is either 0 or 1, and there are no other O's or 1's. Call
such an expression canonical. It's easy to see that no two canonical expressions are
equivalent. If we are working with a total of n variables, there are 20*" canonical
expressions, and thus 20*) values.

EXOR is defined in the primary algebra just as it is in the primary arithmetic, i.e.
X@Y := 0XY. Note however, that now it operates on 2" values instead of just 2. These
become the elements of the EXOR group, whose structure is characterized by fact that
every element is its own inverse. 0 is the EXOR group identity.
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The value algebra has a further structure arising from the fact that a particular non-zero
element has been singled out as the constant 1. As far as the group structure is concerned,
the choice of this element is completely arbitrary. Singling out 1 is equivalent to
introducing a unary operation of negation:

Definition of Negation. ~X := 1®X. Note that ~X = 0X, so the mark symbol O as a
multiplier is synonymous with ncgation, as in Spenser-Brown theory. Note also that
I == X&-X.

Pre-Logic. The term pre-logic, as I have used it elsewhere [E], is defined as a value
algebra given by Boolean EXOR and negation, or equivalently, a group whose every
element is its own inverse and in which there is singled out a particular non-0 element
which we call 1.

Pre-logic is that part of Boolean algebra generated by EXOR and NOT, or by EXOR
and IFF, or by IFF and 0. It can be shown that a binary Boolean operator is definable in
pre-logic if and only if therc arc even number of 1's in its truth table. Thus pre-logic
doesn't include AND, OR, NAND, NOR, or material implication, which shows that it's a
much weaker structure than Boolean algebra.

The elements of a pre~logic are formally indistinguishable from each other, except for 0
and 1. We've seen that pre-logic emerges when we add variability to crossing, and we've
also seen how our canonical expressions are in natural 1-1 correspondence with the
elements of pre-logic. These canonical expressions are quite distinguishable however, and
not just by arbitrary notational features; they fall into different formal classes according to
how many variables they contain.

Something here is at odds with the spirit of Spenser-Brown's law "To re-cross is not to
have crosscd”. The expression xzyw, for instance, suggests a series, a history, of four
possible re-crossings. It is not equivalent to any expression with fewer than four variables,
which says that its fourness is more than just an accident of representation. And yet Laws
of Form is trying to explore a rcalm prior to history, prior even to the possibility of fixing
and tagging things so as to be able to count them. Our notation, which is the source of the
forms we are studying, should reflect this better.

There is a way to make it do so. Let's make a list of all non-constant canonical
expressions except for those consisting of a single variable. Now let's assign, as a
definition, a new variable to each of these expressions in the list; for instance, n := xy.
This doesn't add any ncw expressions, since we now have n = xy. But notice that it
generates two new notational equivalences, x == yn and y == nx. The three expressions x,
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y and n are now formally on an equal footing. It turns out that this is true of all variables,
which are now homogeneous. That is, if we take the defining equations as equivalences,
we can exchange any two variables and obtain a new set of true equivalences of exactly the
same form. Taking single variables as the canonical non-constant expressions ends the
artificial distinction between simple and compound values.

Iil. Primary Space.

As mentioned above, the calling operator, written "&", will enter the picture as a
defined symbol. The idea here is to create the conceptual apparatus of calling in a way that
retains the symmetries of the primary crossing algebra. By so doing, we find that when we
reach Boolean algebra, the particular Boolean algebra we reach is one frame among many.
And here is the punchline: This frame is related to the others almost exactly as it is in
quantum mechanics! The differences are that the scalar ficld of thc common vector space is
now binary rather than complex, negation takes the place of the inner product, and most
important, this vector space is not pulled out of a hat but is already there in the Boolean
algebra of the classical frame!

We'll now push primary algebraic equivalence into the background along with primary
arithmetical equivalence. This means we'll write x®y = y®x, x®x = 1 etc., reserving "=="
for new equivalences involving &.

With 0 as the mark sign, the arithmetic multiplication table for calling is that of
Boolean AND. This table is what defines &; more exactly, it defines four new synonyms
for 0 and 1:

Definition of & for constants:
0&0 =0 0&1 =0
1&0 =0 1&1 =1

where it is to be understood that the O's and 1's on the left can always be replaced by equal
expressions.

When we combine these definitions with the arithmetic of @, truth tables reveal that &
and @ satisfy the distributive law C&(D®E) = (C&D)Y®(C&E), where C, D and E are of
course constants. Interpreting @ as addition and & as multiplication, we get the binary field,
with O and 1 as its elements. Note that we must now use parentheses to specify the scope
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of the two operators; this adds two more symbols to our growing notation.

What happens if we try to extend & to expressions with variables? If one of the
arguments is constant, we can evaluate the resultant immediately by using the multiplication
table for & plus the law of algecbra: given any substitution of constants for variables in an
expression X, we have 0&X = X&0 = 0 and 1&X = X&1 = X. In effect, what we have
done here is to make calling into a pair of unary operators 0& and 1&. Since we originally
made Spenser-Brown's unary crossing operator into a binary operator, at this stage we
could use Spenser—Brown notation with crossing and calling reversed! Taking 0 as mark,
0& would mean enclosure by a square. Since 1 = 00, the Spenser-Brown symbol for 1&
would be double enclosure. Since 1& is the identity operator, double enclosures would
cancel, just like two squares juxtaposed. ~

Unary calling operators like 1& and 0& will be very important for our project. Since
binary calling is conjunction, we'll speak of a unary calling operator as a junction.

The junctions 1& and 0& satisfy both a left and a right distributive law, ie. C&(X®Y)
= (C&X)D(C&Y) and (CAD)&X = (C&X)D(D&X), where C and D are of course constants
(the reader may want to check this by writing out the truth tables). This means that we can
regard our primary algebra as a vector space over the binary field of O and 1, taking & as
scalar multiplication.

Primary algebra is a bit odd as a vector space, since the scalar 1 is also a vector.
Recall that ~X = 1@X. It follows that 1 = X®~X. Identifying 1 with a vector is thus
equivalent to introducing a negation operator on the vectors. At this stage, the abstract
structure of primary algebra is that of a binary vector space with negation; we'll call this
structure primary space.

Abstract Definition of Primary Space: A vector space over the binary field together with an
operator ~ with the property that there exists an element U such that for all X,
~X = U+X

Note that such a negation operator is not possible in any other vector space, since with
any other scalar field we wouldn't have ~~X = X. Negation in primary space resembles
orthogonality in Hilbert space, though it is a weaker concept; indeed, when you introduce a
full orthogonality relation into a primary space it becomes a Boolean algebra.

When you choose a basis in primary space, every vector becomes a bit string. There is
an important analogue in primary space to the concept of ortho—-normal basis in Hilbert

space:
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Proper Basis: A basis in which the constant 1 is represented by the bit string of all 1's.
(Note that 0 is the bit string of all O's in any basis).

To put it in a nutshell, primary space is Spenser—-Brown's primary algebra with the truth
tables for calling and crossing reversed.

IV. Junctions, Prejections and Units.

We still haven't finished with the definition of &. So far we have managed to evaluate
X&Y using the rules of primary algebra alone. But it turns out that if both X and Y
contain variables, this is no longer possible. That is, there are many ways to interpret & as
an operator on primary space without contradicting primary algebra. Instead of choosing a
single &, our project now is to explore this whole class of &'s and see how they relate to
each other. We'll do this in two stages. In the present section we'll study an extended class
of unary operators of the kind I called junctions, which turn out to be projections on
primary space. The theory of junctions seems to be where the real action is, and since this
is mostly new material I must regrettably be somewhat more technical in my presentation
here than 1 have been so far. In the next we'll look more briefly at & as a binary operator.

We have defined the junctions 1& and 0& in primary algebra. Can we define junctions
of the form P& in primary algebra where P contains variables? If we interpret this question
as asking whether P&X can be evaluated within primary algebra the way 1&X and 0&X
can, the answer is no. P&X, as it stands, has a new value. If we are to interpret the form
P& as an operator mapping primary space onto itself, this form must be coupled with a new
equivalence relation that reduces these new values to old ones.

Although primary algebra can't evaluate P&X, it does have some important things to
say about it. Using truth tables we can immediately prove the following three laws:

Linearity. P&((C&X) ® (D&Y)) = C&(P&X) ® D&(P&Y) where C and D are constants.
Idempotency. P&(P&X)) = P&X.
Unity. P&l =P.

The first identity says that P& is a linear operator on primary space. The second says

that it's a projection operator. The third we have already encountered as scalar
multiplication.
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Suppose we started out with any projection operator J(X). The law of unity could then
be used as a definition of P, i.e. P :=J(1). We could then go on to define the form P&X
along with a new equivalence relation == by the condition P&X == J(X). Would this make
P& into a junction?

Not necessarily. Suppose that 1 is in the null space of J, i.e. J(1) == 0, and that J is
not the null projection, i.c. there is some X such that J(X) =\= 0. Then if we should define
P&X := J(X), we would have P&1 == 0, so by the law of unity, P == 0, and J(X) == P&X
== 0&X. But primary algebra says that 0&X = 0, so J(X) == 0, contrary to assumption.
Since we want the & of J to agree with the & of primary algebra, we cannot allow 1 to be
in J's null space.

Junction Defined: A junction is either the null projection or a non-null projection J such
that J(1) =\= 0.

Junctions, as projections, bring into primary algebra the beginnings of the concept of
place. 1t's not far-fetched to speak of the range of a junction J as HERE and the null space
of J as elscwhcere. J as a mapping tclls us what's HERE: things HERE are mapped onto
themselves, while things clsewhere are mapped onto 0. More generally, things that are only
partly HERE are mapped onto the parts of themselves that are all HERE. If we think of P
:= J(1) as what is expressed by J, then J, in its treatment of other expressions, is like an
egocentric talker who can only hear from others what he has already said himself.

Spenser~Brown's crossing operator moves us from one place to another across a
physical line. The operator that generates our present primary algebra was called crossing,
but this is something of a misnomer, since neither its notation nor our early defined
concepts gave us anywhere to cross from or to. But now, given a junction, we have both;
we can now speak of what's in and what's out. Does our term "crossing" live up to its
promise? Does crossing reverse inside and outside?

By crossing I now of course mean the unary operator of crossing, i.e. negation. But at
this point we actually have two concepts of negation: ~P:= 1®P for expressions P, and ~J
:= 1®J for projections J (footnote 3). Let's first look at the latter, which is
complementation (1 here means the identity operator). Recall from Part I that the
complement of a projection J is the projection whose range and null space are those of J
reversed. Complementation thus does reverse inside and outside, HERE and elsewhere.
There is still a problem, though, since the complement of a junction nced not be a junction!
We need another condition on junctions:

Propriety. A proper junction is defined as a junction whose complement is a junction. le.
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a junction J is proper if J is either the identity projection 1& or else J(1) =\= 1.

If we think of 1 as everything, then propriety says that not everything is HERE. The
definition of junction say that there must be something HERE, so if elsewhere can be
exchanged with HERE there must be something there too. The pure void can hardly be
considered a proper place to go to — it's just not done!

Diagonal Matrix Theorem. A projection on primary space is a proper junction if and only
if it has a diagonal matrix in a proper basis. (Recall that a proper basis is a basis in which
the bit string for 1 is all 1's.)

Proof: Choose a basis {Bi} in which a proper junction J has a diagonal matrix. {Bi}
divides into two parts, {Ri} and {Ni} where {Ri} spans the range RJ of J and {Ni} spans
the null space NJ. J will be diagonal for any {Ri} and {Ni} that span RJ and NJ, and
since the non-constant vectors are homogeneous, we can always pick an {Ri} and {Ni}
such that the component bit strings of 1 in RJ and NJ are all 1's, which makes {Bi}
proper. This shows that if a junction is proper it is diagonal in a proper basis. The
converse is immediate, since if {Ri} and {Ni} are all 1's, then neither component of 1 can
be 0.

I don't know whether improper junctions will ever turn out to be worth studying in
depth, but for now we'll stick with proper junctions and drop the "proper" in speaking of
them. The diagonal matrix theorem makes it possible to see clearly how our two forms of
negation are related. First, one more definition:

Unit of a Junction. The expression J(1) will be called the unit of junction J. 1 is the unit
of the identity operator, and it will sometimes make for greater clarity to speak of 1 as the
unit of the primary algebra.

Crossing Theorem. The unit of the complement of a junction is the negation of the unit of
that junction. le., if J is a junction, ~J its complement, then ~J(1) == ~(J(1)).

Proof: If we choose a proper basis in which J is diagonal, then the unit of J will be all
I's in {Ri}, all O's in {Ni}. But the unit of ~J will be all 0's in {Ri} and all 1's in {Ni},
making it the negation of the unit of J.

Every junction has an expression as its unit. By the principle of homogeneity, every
expression is the unit of some junction. But now the question ariscs: given some
expression P, is there more than one junction J of which it is the unit? In case P is a
constant, the answer is no, as we have seen. If there are only two non-constant
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expressions, then it's easy to see that there are only two non-constant junctions, so the
answer is also no. For all larger primary spaces the answer is yes. We'll now classify the
various J's that go with a particular P. First we'll look at the forms of the J's of P, then at

the duplicates of each form.

Form, as I am now using the term, is what remains the same under isomorphism. The
isomorphisms of primary algebra are the non-singular (i.e. 1-1) linear transformations of
primary space that preserve 1. If a junction J' results from J by such an isomorphism, we'll
say that J and J' have the same form:

Junction Forms. J is called similar to J' if J' == TIT™ for some isomorphism T. An
equivalence class of similar junctions will be called a junction form.

Any isomorphism can bc given by a 1-1 mapping between two proper bases. From
this it follows that two junctions have the same form if and only if their ranges and null
spaces have the same dimensions (in the finite-dimensional case, it's enough to assume that
their ranges have the same dimension). Since any division of a proper basis into two
subsets defines a junction, there are junctions of every dimension. The principle of
homogeneity says that there is an isomorphism reversing any two non-constant expressions,
so every non-constant expression is the unit of a junction of every form except 1& and 0&.
If J(1) == P, and J' is similar to P, then J'(1) == P if and only if T(P) == P for
some T that maps J onto I (if TIT™'(1) == P, then, since T(1) == 1, TIT'(1) == TI(1) ==
T(P) == P).

In brief: Among non-constant expressions, every P is the unit of a J of every form
except 1& and 0&, and of all copies of that J that can be reached by a T having P as an

eigenvector.

After this rather detailed exposition, let me conclude with a few less formal remarks.
The concept of junction, which extends von Neumann's deep insight in quantum mechanics
about the connection between propositions and projections, may well be the central concept
in the new more general science that is starting to emerge out of work on quantum
foundations. If we think of a junction as what defines HERE, then junctions are the
building blocks of a very broad conception of space that encompasses not only physical
space but logic and matter and much more still to be explored. Though we have been
treating primary algebra as something that is simply given, if we reflect on what gives us
this particular primary algebra HERE, we see that it must be a junction. The universe of
discourse is the range of a junction. How about the universe itself? WHICH universe?
Why, this one HERE.
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V. Beolean Logic.

Let's now make & into a binary operator. It might seem that we have already done
this, since P and X in the form P&X can be any two expressions. If for every expression X
we choose a particular one of its junctions J, then we can indeed define a binary operator
b(X,Y) := J(Y). But is it AND? Must all these junctions add up to conjunction? Would it
be consistent with primary algebra to write b(X,Y) as X&Y?

As one can quickly verify with truth tables, any binary operator X&Y that satisfies our
multiplication table for 0 and 1, and also the law of algebra, must satisfy the following two

laws:

Associative Law. X&(Y&Z) = (X&Y)&Z.
Commutative Law. X&Y = Y&X.

These two laws are of course meaningless for junctions taken singly, which is why we
didn't encounter them sooner.

Applied to our binary operator b(X,Y), the associative law says that the (functional)
product JK of junction J of X and junction K of Y is the junction of b(X,Y). This means
that KJ is the junction of b(Y,X), so the commutative law tells us that J and K are
commuting projections. More generally, it tells us that if we choose a junction for every
expression, and if these junctions cohere into a single binary operator of conjunction, they
must all commute. Most pairs of junctions don't commute, so the answer to our question
above is no.

Mathematically the situation is really quite simple. In order to have a binary AND, and
with it a Boolean logic, we must choose among the J's of the P's so as to make all the J's
commute. There are many ways to do this, a different way for each proper basis {Bi}. For
a particular {Bi}, the J of a P is the junction having a diagonal matrix whose diagonal is
the bit string of P. The resulting logic is what in Part 1 was called a complete frame. In
Hilbert space the complete frames are the maximal sets of commuting ortho-projections. In
primary theory the complete frames are the maximal sets of commuting junctions.

In Part 1 we saw that we can identify propositions about the state of an object with
projections. In the everyday world, and in classical science, all such projections commute,
and indeed it is impossible even to say what vector space they project onto, since their
matrices are only O's and 1's. As we "progress" to quantum mechanics, though, we find that
there are non—commuting pairs of projections, in this case on Hilbert space, whose failure
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to commute corresponds to the fact that as items of information they cannot be conjoined.

In Part 2 we scem to be moving over the same ground from the opposite direction.
First we emerge from pre-logical darkness into the faint dawn of bare discrimination.
We find oursclves HERE, not elsewhere. THIS separates from that. The world faintly
emerges, but only as a projection. But then we find we can cross from HERE to there and
back, and lo! there are TWO projections, two worlds, an inner and an outer, us and them,
self and other.

Zooming quickly up to the exalted perch of the contemporary mathematician, we see
that these worlds are but two among a myriad. But almost no two of this myriad can
communicate. Like Leibnitz' monads, their windows are mostly closed; no information can
be exchanged with the others. Closed, that is, except within those communities where it
docsn't matter which is first, i.c. where all members commute. In finding our own thoughts
within such a community, we arrive at the logic of the everyday world.
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CODA. DECONSTRUCTION.

My exposition of primary theory has been more or less in the style of what I call
Erector Set science: you start with simple parts and assemble them into a progressively
bigger and better construct that you offer, subject to empirical test, as a portrait or "model"
of the world. This is how it's done these days. But in the present case the style is
somewhat at odds with the message, which is that science today is basically in need of a
radical deconstruction.

Our situation resembles that of our ancestors who learned that the world is not flat. In
a flat world, up and down are absolute, belonging to space itself and giving to every
material object its place in the order of higher and lower. But in our actual world, if you
travel too far afield you can no longer assemble your various observations about what is
higher and lower into a single hierarchy. The facts concerning up and down simply don't
cohere; even though you speak truly, you can't keep saying this AND this AND this etc.
and get a progressively bigger and better construction. As long as you remain in one place
all is well, but the truth doesn't seem to be portable! As Yeats put it "The center cannot
hold. Mere anarchy is loosed upon the world".

Such is the time of dcconstruction. Save what you can of the parts, but prepare to
assemble them in new ways. And don't be in too much of a hurry to reconstruct. The first
requirement is to explore, to take note of what is changing during your enlarged travels, and
of what stays the same. And then of course to make maps — not maps as static pictures,
but maps as records and stories of your explorations, both real and imagined. Let the new
order emerge, don't try to force it.

Today with quantum mecchanics the truth seems to have lost its portability when you
travel from one to another of what Bohr called "experimental arrangements" on a quantum
object. You can no longer assemble your observations from such various viewpoints into a
single piece of knowledge about the state of the object; again, the facts simply don't cohere.
But now the trouble doesn't seem to be with the relativity of ideas like up and down, but
with coherence itself. The reason you can't say this AND this AND this etc. is not that
this, this and this etc. are relative, but that AND itself is relative! Conjunction has fallen
apart; what remains is a plurality of incompatible junctions.

I think we are in for a period of exploration that will produce surprises like nothing we
have ever seen before. I hope the kind of theorizing offered in this paper will prove useful
to the new mapmakers.
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APPENDIX. A small house that can't be flattened.

The concept of flattening a set of frames is actually a bit more complicated than was
indicated in the main text.

House. Definc a house H as a sct of quantum proposition, i.e. ortho—projections on Hilbert
space, such that if P and Q arc in H, then 1-P is in H and if PQ = QP then PQ is in H.
Given any set S of projections, we will speak of the house generated by S as the smallest
house containing S. It's clear that every house is a union of overlapping frames each of
which is a maximal subset of commuting projections.

Implies. Given propositions P and Q, define P<Q, which we read as "P implies Q", or
"All P's are Q's", to mean P&Q = P. For quantum propositions this of course means

PQ =P

Flattening. Given a housec H and Boolean algebra B, define a flattening of H into B as a
1-1 mapping f(P) of H into B such that

F1. f(1-P ) = ~f(P)
F2. If PQ = QP then f(PQ) = f(P)&f(Q)

F3. If f(P)<f(Q) then P<Q.

F1 and F2 say that cvery frame of H is mapped onto a factor of B, which is how I
described a flattening in the main text. There is a strong empirical argument for F3.
Note first of all that if P<Q is falsc then there will be some repetitive experimental
arrangement in which not all P's will be Q's; this follows from Born's probability rule
interpreted as governing observable relative frequencies. Now if B is to be a Boolean
model of the situation, then certainly it must exhibit this experimentally confirmable
fact, i.e. not all f(P)'s can be f(Q)'s. If they are, i.e. if f(P)<f(Q), then P<Q,
which is F3.

We shall now prove the following

Theorem: Given any three orthogonal states, there are nine propositions definable in terms
of these three states that generate a house for which there is no function f that satisfies F1
and F2 without violating F3. Such a violation can be quantified in terms of observable
relative frequencies, and amounts to a deviation of more than 8% from the value predicted

by quantum mechanics.
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Proof:

Let b, b' and c be orthogonal states, i.e. (ortho) projections onto orthogonal 1-dimensional
subspaces. Let's also represent these states by unit vectors, to which we'll give the same
names b, b' and c. Define four more state vectors as follows (k here is 1 over the square
root of 2):

p := k(c+b) p' = k(c+b')
q = k(c-b) q = k(c-b")

We are now only concerned with ortho-projections, which we can represent by those
subspaces that are their ranges. Their logic is then represented by the following subspace
relations: ~P is the ortho—complement of P, P&Q the is set intersection of P and Q, and P
OR Q is defined as ~(~P&~Q), which is the subspace sum of P and Q, and P-Q is defined
as P&(~Q). We shall only consider these operators to be defined if PQ = QP, which means
that they describe Boolean relations, i.e. relations among propositions within a single
Boolean frame.

Since b, b' and ¢ are orthogonal and thus commuting, we can define the 2-dimensional
propositions B and B' as follows:

B:=(bORc)
B' := (c OR b")

Note that p and q are orthogonal as are p' and q. This means that we can write
B =(pOR q) and B' = (p' OR q).

p p'
b B lo] B' b'
q q'

Define U := (B OR B') = (b OR ¢ OR b'). Define P as the 2—dimensional proposition
which, as a subspace, is spanned by p and p', and Q as that spanned by q and q":
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Since p and p' are linear combinations of b, ¢ and b', P<U, i.e. PU = UP = P.
Similarly Q<U. This mcans that U-P and U-Q are well-defined, and they are 1-
dimensional since P and Q are 2-dimensional and U is 3-dimensional.

Now let's consider the house H generated by b, ¢, b', p, p\, q, ¢, P and Q. We've met
three of its other members: B, B' and U, and these are the only other members we need be
concerned with. Suppose we try to flatten H with a function f, and we get as far as
satisfying F1 and F2. Let's see what this entails:

Since B = (p OR q) we have f(B) = (f(p) OR f(q)), and similarly, f(B") = ((f(p') OR
f(q)). Sincec U = (B OR B'), we have f(U) = (f(B) OR f(B")) = ( f(p) OR f(q) OR f(p") OR

f(q").
f(p")
f(p) f(B")

f(B) =
f(U) f(q)

f(q)

Since p<P and p'<P, by F2 we have f(p)<f(P) and f(p')<f(P), and similarly for q and q.
Thus f(U) < (f(P) OR f(Q)). But we know that P<U and Q<U, so (f(P) OR f(Q)) < f(U),
which means that f(U) = (f(P) OR f(Q)). From this we conclude that f(U-P) < f(Q).

Now if F3 were true, we would have U-P < Q. Is this in fact the case? The easiest
way to find out is to build a simple three dimensional model from which one can read off
the relevant trigonometry. At the bottom of the page are two cutouts for making such a
model; the triangles represent the diagonal planes of a pyramid which shows the angles
among p, p, q, q', b, and b, the edge lines, and c, the common center line. P is the plane
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of the pyramid face containing the edges p and p', Q the same for edges q and q. U is
physical 3-space.

U-P is a line perpendicular to P. If, as F3 requires, that line is contained in Q, i.e. if
U-P < Q, then Q would have to be perpendicular to P. A quick look at the pyramid shows
that this is not true; a calculation shows that the actual angle between P and Q is about 73
degrees. Thus f cannot satisfy F3; the house H cannot be flattcned.

By Born's rule, the 73 degree angle means that about 8% of U-P's are not Q's. But all
of f(U-P)'s are f(Q)'s. Thus any model of H based on a mapping f that identifies all of its
frames with factors of a single frame must lead to observational errors of at least 8% in
relative frequencies. Any mapping of H into a Boolean frame that is consistent with the
observed relative frequencies must sever some of its inter-frame bonds, i.e. some of its
von Neumann equivalences. Since there is a different house H for any three orthogonal
states, any Boolean model of quantum logic must tear it to shreds.

Footnofes.

(1) A Hilbert space is a vector space over the complex field with an inner product. A projection P is
a linear operator such that PP = P. P is specified when we specify two subspaces: the range of P,
and its null space, the latter being the set of all vectors v such that P(v) = 0. A projection is called

an ortho -projection _if its null space is orthogonal fto its range. The null space of an ortho-
projection is the ortho—complement of its range, so that an ortho-projection can be specified by

specifying its range alone.

(2) Proof: Suppose PQ is a projection. Then PQ is self-adjoint, ie. PQ = (PQ)* = Q*P* = QP,
so P and Q commute. But if PQ = QP, then (PQ)(PQ) = (PP)(QQ) = PQ, so PQ is a projection.

(3). Recall that in Part I we saw that the complement operator ~J can be written as 1-J, where 1 is
the identity operator. Since subtraction and addition are the same operator in the binary field, this
becomes ~J := 1@/ for primary space, which reveals the interesting parallel between quantum
negation for projections and primary negation for expressions.)
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CONSTRUCTION OF THE DIRAC EQUATION

Pierre Noyes

A bit-string construction of all solutions of the free particle Dirac equation
connecting two space-time events has recently been presented and subjected to
searching criticism and discussion in Pat Suppes’ seminar (Philosophy 242a).
When it comes to comparison with experiment, all of relativistic quantum scat-
tering theory, and sccond quantized relativistic field theory, has to be reduced
to algebraic expressions which can be computed from these single particle “so-
lutions” once the particle number “space” has been given appropriate finite
and discrete extensions. That we can construct this same basis from bit-string
physics should help convince some establishment physicists that we are model-
ing the same physics that they are.

Our construction starts from the firing of two counters. We first consider all
possible “trajectories” consisting of left and right space-time steps connecting
the two firings. The step length is the Compton wavelength (h/mc); each step
is executed at the spced of light. Feynman introduced a similar model some
time ago. Ile used imaginary step lengths proportional to h/mec. He had to
let his step-lengths approach zero in order to reproduce the oscillating Bessel
function series which are the computable representations of the solutions of the
Dirac equation. We obtain these series directly — keeping our real steps fized
in length. We succeed in doing this because our bit-string theory allows us to
use the two physical ideas of “background” and “conservation laws” in a way
that was not available to Feynman.

Our theory allows events to occur only at intervals which are an integral
number of deBroglie wavelengths apart; since the theory also requires all masses
to be commensurable, this result insures (relativistic) 3-momentum conserva-
tion. Enlarging our “free particle” problem to include global 3-momentum con-
servation, we can (for purposes of the current construction lump) the massive
laboratory background in which the counters are embedded into a single ex-
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ternal coordinate with large mass, undergoing the same type of zig-zag motion
at a much higher frequency. A simple bit-string model of this situation is pro-
vided by comparing two independently generated stings. When one contains a 1
where the other contains a 0 the particle moves to the right and in the converse
situation to the left. When a sequence of 1’s changes to a sequence of zeros the
particle zigs, and in the converse situation it zags. When both strings contain
the same symbol (two 1’s or two 0’s), the local space and time coordinates rep-
resented in our discrete version of the Dirac equation do not change. The the
second class of cases corresponds to the many possible situations in which some-
thing is going on in the background which does not affect our single particle in
any significant way. At any such point along its space-time trajectory, the parti-
cle neither changes its local position by h/mc nor its local time by h/mc?. In the
count of possible cases in a “path space” which includes this background degree
of freedom we have many more possibilities than Feynman considered. Yet each
of our trajectories can be put into one-to-one correspondence with each of his.
Another way of putting it is that we are using a configuration space in which
the background dimension(s) are orthogonal to the particle motion, but must
be included in the case count. In this way, we arrive at the case count originally
derived by David McGoveran from much more general considerations. This al-
lows us to get the pieces of the series solution to the Dirac equation directly
while keeping the step length fixed. Our bit-string comparison also allows us to
derive the relativistic velocity addition law and establish our discrete version of
Lorentz invariance connecting 3 or more counter firings.

The second physical idea we require comes from a still subtler aspect of our
discrete theory, which was not fully developed in the seminars. So far as the
space-time structure goes, the position-velocity discreteness gives us the usual
commutation relations for position, momentum, and angular momentum. We
find that space-time (“content”) strings with an odd number of 1’s represent
fermions (half intégral angular momentum in units of %, which includes the
Dirac case) and two of them combine to give a boson (integral angular mo-
mentum). But our theory also requires each content string to have a “label”

ANPA West Volume 2, #2 45




string which represents the quantum numbers of a particle, and when the 0’s
and 1’s are interchanged represents the quantum numbers of the corresponding
anti-particle. Putting these together gives us the invariance under particle-
antiparticle interchange (“charge conjugation”), left-right reversal (“parity”)
velocity reversal (“time reversal”) which is respected in the laboratory (CPT
invariance). Conventional theory derives this most easily from the Dirac equa-
tion, and has trouble with more general derivations. For our bit-string theory
it is “obvious” from the start; I have called it “Amson Invariance”.

Since we arc lalking about a spinor,we must insure spin conservation. We
start by taking account of the spin direction relative to the direction of motion,
i.e. the “helicity”, both for the overall motion and for the individual steps. We
then find that spin conservation requires us to take the difference between the
number of cases with an even and an odd number of bends along the trajectory.
This gives us the minus sign that Feynman’s sleight-of-hand put in by using
(¢)2 = —1. For two space-like connected events, we invoke Feynman’s idea that a
particle moving backward in time is the same as an anti-particle moving forward
in time. [Of course this was suggested to Feynman by CPT invariance.] Since
(for the one-particle equation) the number of particles minus the number of anti-
particles must be +1 at the start and end of any observed class of trajectories,
we again have to take a difference between two classes of calculated trajectories.

In short, our construction works because (a) we include a crude model for
the “background” against which the particle is observed and (b) we impose a

conservation law.
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A Comment on the Combinatorial Hierarchy

by David McGoveran

(This note was read before the Light Hearted Philosophy Group, Stanford University,
Nov. 6, 1991.)

I am continually amazed by the abysmal state of modern science. For too long the state
of affairs expressed so clearly in the Bohr/Einstein debate (see footnote 1) has been accept-
ed without further questioning; so much so that I sadly confess to viewing most so-called
progress in science as little more than so much engineering, data collection, and curve—fit—
ting. But then I am ill-equipped to make such judgements public.

In contrast to this appalling situation, I find the point of view expressed by Kilmister
and Bastin refreshing; not only because it attacks foundational issues directly and its practi—
tioners are undaunted by the tremendous difficulties involved, but also because it does so in
a manner that I see extending the very essence of relativistic thinking while preserving what
I consider to be most valid in Bohr's thinking.

On the one hand, the importance of statistical aspects of nature is reified in the com—
binatorial aspects of Bastin's and Kilmister's work. At the same time, there is room in the
theory for a deterministic view — one which I believe Einstein would have found encourag-—
ing even though it is not as "mechanistic" or "materialistic" as he might have preferred. In
addition, the whole work hinges on the idea that no meaningful contact can be made with
nature except by starting from the dimensionless numbers. All other contact is too theory—
laden. This is relativity applied to the entirety of empirical science and not just to "refer—
ence frames" and "transformation laws". It insists that no predisposition, whether particular
coordinate frame or particular units of measure, be treated as intrinsic. The combinatorial
hierarchy numbers identify certain important dimensionless constants, and, when coupled
with the requirements that the entirety of the generation of these numbers meet certain not—
too-hard-to-accept criteria (see footnote 2), they become more compelling in terms of the
observed evidence of intrinsic structure in the universe. There is something important here.
And it is mathematically unique!

What remains in question is the interpretation, the putting on (or in) of flesh. But this
is part of the non~invariant (i.c. the non-intrinsic) aspect of any theory; the tools chosen for
the task and the language chosen for describing the task's results can vary in power and
context. One must not confuse these with the subject of the task itself. My own efforts

ANPA West Volume 2, #2 47




have been to emphasize how very much they bring to the task... and thereby to expose the
importance of what is truly intrinsic. In psychology this might be called a mathematics of
framing. But I have little fear of any success. We hold too many principles to be self-
evident; and hold dearly to their being different for each of us.

Footnote 1. If I had to decide, I would say that I fall more on the side of Einstein. I do
not believe that the Providential Authorities play dice nor that the Old One is malicious; on
the other hand I would not be surprised if man is perverse in his ability to understand nor
that the creator has a sense of humor and finds amusement in man's insistence on looking
only under the street lights. Einstein felt strongly about the continuum and about the exis-
tence of a particular causal structure; 1 find these to be "artifactual”. Bohr insisted on an
intrinsic statistical structure; 1 find this attitude defeatist and unimaginative while greatly
admiring his abilitics to tease so much prediction out of such a view. For me, the value of
the statistics is beyond dispute but the reason for them given by Bohr is nonsense.

Footnotec 2. For example, cxpressibility in a vector space, hierarchically organized, auto-
matic termination, etc. —— I have described these in more detail in Justifying the Combin-
atorial Hierarchy, ANPA 12 Proceedings.

C. 1991, David McGoveran
Alternative Technologies
13130 Highway 9, Suite 123
Boulder Creek, CA 95006
(408) 425-1859
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PRESIDENT'S MESSAGE

By Fred Young

Whenever I attend an ANPA meeting at either Stanford or Cambridge I am
struck by how many different ways there are of approaching the core set of
problems which interest ANPA members.

ANPA meetings have always involved a deep fundamental
interdisciplinary approach to science, focusing on the overall organization of
the universe and our knowledge about it. Now ANPA meetings are no longer
the only places that interdisciplinary scientific ideas are discussed. The
appearance of new subjects like chaos and fractal geometry has focussed
renewed interest on the idea that common functions can be observed in
diverse systems. The physics of information and complex systems is now
Jjoining conventional particle physics in the quest for fundamental theories.
My own research is in the area of complex systems and it seems to be
converging on a common basis of understanding with the main ANPA
research interests. At ANPA 13 there was a general discussion on the
meaning of the combinatorial hierarchy that was continued in the U.S. by
myself, Pierre Noyes, David McGoveran and Tom Etter. These discussions
helped me to clarify some ideas of how fto facilitate intercommunication
among ANPA members using very different methods and approaches.

I find that it is useful to break things down into self-organization, self-
reproduction and self-generation. Self-organization immediately suggests the
field initiated by Prigogine which,because of the modern computer, joined
with the subjects of chaos and fractal geometry to become non-linear science.
Part of this subject involves cellular automata, which gave us the game of life
and introduces self-reproduction. This subject goes back a long way in
computer science to von Neumann's original self-reproducing cellular
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automata. Self-reproducing and self-organizing systems occur within some
already developed system of computation and information transfer.

The third category of self-generation deals with the primary
organization of information processing which gives rise to both observed
reality and observers. Self-organization and self-reproduction occur within
pre—existing contexts, and utilize units with pre-existing qualities. This pre-
existence is unsatisfactory in a fundamental theory, and studies of self-
generation try to understand the primary processes responsible for a universe
in which other processes of organization can occur. The study of self—
generation is probably the major focus of ANPA members. The combinatorial
hierarchy, program universe, McGoveran's foundation for a discrete physics,
and Etter's pre-logic all involve studies of a self-generating universe.

My own studies indicate that the subjects of self-organization and
self—reproduction become highly relevant to fundamental physics when
studied using computer simulation. To make the story complete I would have
to be able to bring in self-generation, a research task for the future.

The computational approach which ANPA has taken since its beginning
is becoming increasingly widespread in physics and other sciences. Combining
particle physics with information and complex systems as ANPA has done for
years is a promising direction for scientific unification. This will become
increasingly apparent to other researchers as the idea spreads that
information plays a fundamental role in physics. The three "selfs," self-
generation, self-organization and self-reproduction, are convenient
categories for discussing interdisciplinary subjects and they are likely to be
found together in any fundamental theory. Some popular approaches to
scientific unification such as superstring theory seem to neglect self-
generation and may therefore not be completely fundamental. e
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ALTERNATIVE NATURAL PHILOSOPHY ASSOCIATION

Statement of Purpose

1 The primary purpose of the Association is to consider coherent models based
on minimal number of assumptions to bring together major areas of thought
and experience within a natural philosophy alternative to the prevailing
scientific attitude. The combinatorial hierarchy, as such a model, will form
an initial focus of our discussion.

2. This purpose will be pursued by research, conferences, publications and any
other appropriate means including the foundation of subsidiary organizations
and the support of individuals and groups with the same objective.

3 The Association will remain open to new ideas and modes of action, however
suggested, which might serve the primary purpose.

4. The Association will seek ways to use its knowledge and facilities for the
benefit of humanity and will try to prevent such knowledge and facilities
being used to the detriment of humanity.
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