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Editorial 

The title ofthis proceedings "Groupings" is obtained from three pertinent concepts. First, 
ANP A remains a distinct and important group, characterised by the photograph on the front 
cover. Second, the mathematical concept of"group" in the plural sense is of relevance to 
some of our work. Third, it is a word that has not been used before in an ANP A proceedings! 

ANP A is in a process of transition. The association has been in existence for over thirty years, 
the consequence of which is the natural passing away of some of the founders and some of the 
members. Nevertheless, a core group of about a dozen stalwarts remains, augmented by a few 
newer members. We have adapted our meeting location to accommodate the disability of one 
of our founders. We remain an international group with members travelling from the USA, 
Canada and Europe to meet in person once again this year. 

ANP A remains a forum where the scientifically minded can express their most heartfelt and 
inevitably most challenging work in a supportive and constructive atmosphere. We are not 
bound by the conventional modes of thinking, hence our alternative nature. We strive to 
remain scientific. However science is not capable of encompassing all that is relevant in 
human and universal affairs and so challenging philosophical perspectives are accommodated 
and encouraged. 

A historical focus of the group has been the Combinatorial Hierarchy. This work remains 
profoundly relevant. Over the years however, other models of reality have emerged which are 
also distinct from those promulgated by the conventional scientific community. Moreover, we 
have seen the emergence of new ideas in the biological sciences which challenge deeply held 
conventional views. 

As ANP A continues its transition, both in its governance and in the work it pursues we hope 
to emerge larger, more vibrant, more inclusive and more visible. We wish to attract people 
from all walks of life who can embrace and enhance Alternative Natural Philosophy. 

Regards 

Grenville J. Croll 
Nicky Graves Gregory 
Co-Organisers, ANP A 35. 
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The Topsy Test for Awareness 1 

Michael Manthey 

November 2013 manthey@acm.org 

Abstract. From micro-level brain-mapping mega-projects to pseudo-intelligences like 
Watson, Siri and the like, contemporary technology is (more or less blindly) getting 
within groping distance of kinds of mindlessness that will be very difficult to differ­
entiate from human consciousness. Certainly the classic keyboard-based Thring Test 
is feeling its age, and will foreseeably be hard-pressed to cope with the sophisticated 
behavior allowed by massive modem hardware and software platforms. Nor is it en­
tirely clear what exactly the Turing Test tests, but it certainly isn't awareness. I define 
awareness and briefly describe Topsy, a potentially aware software Entity. I also pro­
pose a simple way to test for the presence of awareness in a 2-way interaction between 
otherwise anonymous Entities. Finally, I ask some questions about the uses to which 
such Entities might be put. Along the way, qualia are captured and mind/matter duality 
is supported. 

Keywords: Topsy, Watson, Siri, chat-bots, AI, artificial intelligence, consciousness, 
awareness, qualia, mind/matter, duality, Self, slavery, Turing Test, robot, drone, mili­
tary, corporation, government. 

1. Introduction. 

I have long felt the term "artificial intelligence" to be a euphemism for something that's 
too risky to say directly ... if you want to be properly scientific. But that was some 
50 years ago, and many things that once were scientific heresy are now accepted fact, 
eg. that there are computations that exceed what a Thring machine can do (quantum 
computing), that there is a very real connection between the brain and the immune 
system, that prions really exist, that other animals are tool users (chimpanzees, corvids, 
octop1), can count and even add (grey parrot Alex), etc. 

So I think that now we can face the truth, which is that all the times when we have said 
"artificial intelligence", what we really meant- perhaps unconsciously- was "artificial 
consciousness". But this denial has left the discussion of what consciousness is up in 
the air, and as a result, things like "big data" crunching and huge Bayesian networks 
- sophisticated though they be - are now routinely referred to by journalists as "AI". 

1Based on an invited talk presented at the 2013 Loebner Competition. To appear in a special issue of the 
Joumal of Experimemal and Theoretical Artifidalllllel/igellce, P. McKevitt, C. Fields, H. Loebner Eds. 
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A typical example, this from a recent New Scientist [1]: "Computer aces child's IQ 
test. An AI program that understands words has scored as high as a preschooler in a 
verbaiiQ test. ... A/'s s11ch as Google's search engine or IBM's Watson ... ". In fact, the 
technologies underlying such systems as Watson and Siri are realized with standard 
software tools, and there's nothing mysterious going on anywhere. It's all "put in by 
hand" so to speak, and there's nothing non-Thring about any of it. 

The absurdity of equating data-thumping with "artificial intelligence" is apparent when 
we replace the euphemism by its reality, "artificial consciousness", because it is intu­
itively clear that "consciousness", by its very nature, cannot be "artificial" - only the 
real thing will do. And this real thing is emergent and self-organizing and not "put in 
by hand" at all. So conscio11sness is what we're really about in the field called AI, or 
at least what some of us ought to be thinking about. Unfortunately, exactly what con­
sciousness is is problematic. My point of entry is the working definition Consciousness 
is awareness of awareness, since it seems to reduce the scope of my ignorance. So the 
question becomes, "What is awareness"? 2 

[By awareness I mean the experience that one is a unitary entity, even whilst in pro­
found appreciation and contact with one's surround. Self-awareness is generally larger 
and mostly unconscious relative to our normal waking (ie. ego-)consciousness. Aware­
ness, sans the unitary feeling, is said to accompany certain very deep meditative states. 
The mechanism presented below allows all of these.] 

From a "systems" point of view, awareness, being un-localized, looks like some kind 
of distributed computation. A distributed computation consists of many more or less 
independent processes that together, with little or no centralized control, nevertheless 
produce globally coherent behavior. Examples abound in Nature, from beehives and 
anthills to ecologies, and from molecules and crystals to the quark structure of protons. 
Other favorites are the schooling behavior of fish and flocks of birds turning en masse. 

However, the difference between these systems and awareness is that awareness is not 
material - it has no substance - and yet it nevertheless seems to possess agency, even 
though its coherence is ineffable. 

The only general purpose concept (that I can think of) that matches this description is a 
wave. A wave, to be a wave, is an extended affair. I like to say that, so to speak, a wave 
is everywhere. The flip side of the wave concept is that, even though it is everywhere, 
it is also - simultaneously - nowhere in particular. In a system that works like a wave, 
"nowhere in particular" translates to the myriad local micro-changes that together make 
up the wave, just as HzO molecules' motions (mostly vertical) make up water waves. 
Awareness per se can then inhere in a multi-dimensional wave-like spectrum. So, so 
far so good: awareness is wave-like. 

Mathematically, to be in a world of waves is to be in the world of Joseph Fourier, who in 
1805 proved that (very nearly) any function can be exactly replaced by a suitable sum of 

2 Note that "awareness of awareness" has two interpretions, depending on whether the second awareness 
is intemaJ or external. Both interpretations are valid, and the Topsy Test requires both. Note that this clas­
sification of "awareness" and "consciousness", while workable, is l'eT)' crude compared to eg. Tibetan and 
Vedantic observations, whose often flowery language is actually l'ery precise, but also often defines differing 
schools of interpretation. 
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sines and cosines. Titis was an astounding discovery, and even though it capped several 
decades of general interest in doing such a thing, his result nevertheless attracted much 
controversy in its day. Today, it is a ubiquitous - because enormously useful - piece of 
mathematical and technological furniture. 

2. Mind's Wave-Parlicle Duality 
More to our purpose, however, is the closely related Parse val's Identity of 1799, which 
states that the projection of a function :J: onto an 11-dimensional orthogonal space is the 
Fourier decomposition of :J:. Parseval's Identity is a generalization of the Pythagorean 
theorem to 11 dimensions. In the 11-dimensional coordinate system, :J:'s current value 
corresponds to a hyper-hypoteneuse in an 11-dimensional hyper-cube, and the projec­
tion breaks that hyper-hypoteneuse down into the various pieces along each of the 
dimensions that go into its construction. 

To construct an 11-dimensional cube, begin with an ordinary plane right triangle with 
unit sides a and b. Reflect this triangle on its hypoteneuse, forming a square with sides 
a and b, area ab, and diagonal c = ../ a2 + b2• Next, lift this square one unit vertically 
to make a unit cube with volume abc. Its diagonal is d = ../a2 +b2+c2, and this 
sum-of-squares symmetry continues as we make a 4d cube, then 5d, etc. 

At the same time, going back to the starting right triangle, we can also express the 
sides a and b as a = cos II and b = si11ll, where II is the angle between a and the hy­
poteneuse. And now all becomes clear: substituting these sine and cosine equivalents 
for a, b, c, d, ... up through the dimensions will yield, for the n-dimensional hypoteneuse 
(=the current value of the function :J:, whose projection we began with), a big sum of 
... sines and cosines, ie. Fourier's world. 

So the world of waves and the world of orthogonal coordinate systems are the same 
world. It is in the latter that we will connect to computation. The connection is this: 
let each dimension correspond to the state of some process, where all these processes 
a,b,c,. 00 ,ab, ac,oo., abc, 00. are notionally independent (think orthogonal), though in­
teracting otherwise freely and concurrently. 3 Looking at the ongoing Heracletian 
flurry of process-state evolution in such a system, the high frequency Fourier bands 
correspond to short-term, fine-grained details, and low frequency bands to long-term 
symmetries and global developments. These cross-summed Fourier bands constitute 
the world of qualia- thejeeli11g of (eg.) redness vs. the optical frequencies detected by 
individual retinal cells. 

And so we see that "distributed" behavior- ie. processes a,b,c, ... ,ab, ac, ... , abc, ... 
all running (quasi-)independently- corresponds to wave-like behavior. In the physi­
cal world, various constraints (eg. conservation Jaws, entropy) rule out certain process 
behaviors as impossible or meaningless, and give form to the free-for-all that is the 
remainder. In addition, as the system self-organizes, it will - if it has sufficient com­
plexity- learn ways to make itself transparent or reflective to those waveforms that are 

3 In the geometric (Clifford) algebra over ZJ = {0, I,- l} rhat I use, !-vectors are processes wirh one bit 
of state, ± 1, whence an m-vector has m bits of state. For concurrent processes a, b write a+ b; when a, b 
interact writeab; ab too is a process with external appearance ±1. And so on. NB: ab = -ba ~ J=T. 
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harmful to it; and complementarity, ways to absorb information and to promote its own 
further existence via energy-consuming reaction. 

The result is the regularities - short, medium, and long term oscillations - that we, 
and any awareness, will (indeed, must) experience. As a corollary, it is very likely 
that awareness is not possible if the surround is too unstable [2]. This is often seen in 
visualizations of chaotic systems, where there will be a stable oscillatory behavior for 
a while, which then suddenly disappears, to be replaced by state transitions with no 
apparent pattern at all. 

We see also that awareness, being a wave, is an emergent, collective phenomenon, with 
nothing scientifically mysterious about it. The mystery is in the experience of it. 

3. Persistent Awareness 
To capture the persistent aspect of awareness - it's present whenever I am- I postulate 
that it is a resonant state - a self-maintaining and very complex oscillation - where the 
spectrum of this resonance will vary, eg. according to the properties of the surround 
wherein the awareness is emplaced. This resonant state rests on and derives from the 
brain's neural substrate, butnevert/zeless, the mathematical space in which the resonant 
state exists is outside of (and much larger than) the mathematical space defined by 
individual neural function, because it is a co-occurrence (ie. superposition) state. 

That is, algebraically, an EEG-type wave of brain activity is a scalar sum of neural activ­
ity, treating all neurons as being in the same dimension. But as the Coin Demonstration 
(below) shows, a close analysis of co-occurring processes leads to the conclusion that 
the processes (eg. neurons) lie on or/hogonal dimensions, which algebraically means 
that ab = -ba. Thus any argument that relies on globalizing the definition of an indi­
vidual neuron's function is flawed. In other words, our aware experience is usually an 
on-going 3d projection of a much larger space, of which 3+ ld is the result, but not the 
one-and-only beginning-and-ending place. 

So both the materialists (the Pythagorean side of Parseval) and the non-materialists 
(the Fourier side of Parseval) get their cake, and get to eat it too ... for the price of also 
being half wrong, ie. for claiming that their story was the whole story. From a discrete 
process and informational point of view, both stories are correct, simultaneously, all 
the time. Parseval's Identity cements the argument. 

The following Coin Demonstration clarifies. 

Act I. A man stands in front of you with both hands behind his back. He shows you one 
hand containing a coin, and then returns the hand and the coin behind his back. After 
a brief pause, he again shows you the same hand with what appears to be an identical 
coin. He again hides it, and then asks, "How many coins do I have?" 

Understand first that this is not a trick question, nor some clever play on words - we 
are simply describing a particular and straightforward situation. The best answer at 
this point then is that the man has "at least one coin", which implicitly seeks one bit 
of information: two possible but mutually exclusive states: statel = "one coin", and 
state2 = "more than one coin,. 
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One is now at a decision point - if one coin then doX else do Y - and exactly one bit of 
information can resolve the sitnation. Said differently, when one is able to make this 
decision, one has ipso facto received one bit of information. 

Act II. The man now extends his hand and it contains two identical coins. 

Stipulating that the two coins are in every relevant respect identical to the coins we saw 
earlier, we now know that there are two coins, that is, we have received one bit of infor­
nuuion, in that the ambiguity is resolved. We have now arrived at the demonstration's 
dramatic peak: 

Act Ill. The man asks, "Where did that bit of information come from?" 

Indeed, where did it come from?! 4 The bit originates in the simultaneous presence 
of the two coins - their co-occurrence - and encodes the now-observed fact that the 
two processes, whose states are the two coins, respectively, do not exclude each other's 
existence when in said states. 5 

Thus, there is information in (and about) the environment that cannot be acquired se­
quentially, and true concurrency therefore cannot be simulated by a Thring machine. 
Can a given state of process a exist simultaneously with a given state of process b, or 
do they exclude each other's existence? This is the fundamental distinction. 

More formally, we can by definition write a+ a = 0 and b + b = 0 [- = not = mi­
nus] meaning that (process state) a excludes (process state) ii, and similarly (process 
state) b excludes (process state) b. 6 Their concurrent existence can be captnred by 
adding these two equations, and associativity gives two ways to view the result. The 
first is 

(a+b)+(ii+b)=O 

which is the usual excluded middle: if it's not the one (eg. that's+) then it's the other. 
This arrangement is convenient to our usual way of thinking, and easily encodes the 
traditional one/zero (or 1/I) distinction. 7 The second view is 

(a+b)+(ii+b)=O 

which are the two superposition states: either both or neither. 

The Coin Demonstration shows that by its very existence, a 2-co-occurrence like a+ b 
contains one bit of information. Co-occurrence relationships are structural, ie. space­
like, by their very nature. This space-like information (vs. Shannon's time-like in­
formation) ultimately forms the structnre and content of the Fourier bands, eg. (all 
2-vectors). See [5] for the mathematics. 

4 [Think about it! Where did that bit come from? Thin air?] 
5Cf. Leibniz's indistinguishables, and their being the germ of the concept of space: simultaneous states, 

like the presence of 1he two coins, are namely indistinguishable in time. 
6This is the logical bouom, and so there are no superpositions of alii and bib: they are ld exclusionary 

distinctions. Superposition first emerges at level2 wilh ab via the distinction exclude vs. co-occur. 
7Since X is not the same as Ox, an occurrence X is meaningful; in terms of sensors, :cfi is a sensi11g of an 

externality ofx, not x itself. 
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Sets of m-vectors - {xy}, {xyz}, { wxyz}, . .. - are successively lower undertones of the 
concurrent llnx at the system boundary x + y + z + ... , and constitute a simultaneous 
structural and functional decomposition of that llux into a hierarchy of stable and meta­
stable processes. The lower the frequency, the longer-term its influence. 8 

But where do these m-vectors come from? 

Act IV. The man holds both hands out infro/11 of him. One hand is empty, but there is 
a coin in the other. He closes his hands and puts them behind his back. Then he holds 
them out again, and we see that the coin has c/zanged hands. He asks, "Did anything 
happen?" 

This is a rather harder question to answer. 9 To the above two concurrent exclusionary 
processes we now apply the co-exclusion inference, whose opening syllogism is: if a 
excludes a, and b excludes b, then a+ jj excludes a+ b (or, conjugately, a+ b excludes 
a+b) .... This we have just derived. 

The inference's conclusion is: and therefore, ab exists. The reasoning is that we can 
logically replace the two one-bit-of-state processes a, b with one /Wo-bits-of-state pro­
cess ab, since what counts in processes is sequentiality, not state size, and exclusion 
births sequence (here, in the form of alternation). That is, the existence of the two co­
exclusions (a+b) I (a+ b) and (a+ b) I (a+ jj) contains sufficient information for ab 
to be able to encode them, and the[efore, logically and computationally speaking, ab 
can rightfully be instantiated. 

We write 8(a+b) = ab = -8(a+b) and 8(a+b) = ab = -8(a+b), where 8 is a co­
boundary operator (analogous to integration in calculus); differentiation is the opposite, 

ab ~a+ b . A fully realized ab is, we see, comprised of two conjugate co-exclusions, 
a sine/cosine-type relationship. Higher grade operators abc, abed, ... are constructed 
similarly: 8(ab+c) =abc, 8(ab+cd) =abed, etc. 

We can now answer the man's question, Did anything happen? We can answer, "Yes, 
when the coin changed hands, the state of the system rotated 180°: ab(a + b)ba = 
a+ b." We see that one bit of information ("something happened") results from the 

alternation of the two mutually exclusive states. [The transition a+ b ~ ab is in fact 

8Christopher T. Kello , Brandon C. Beltz , John G. Holden , Guy C. Van Orden: Tire Emergent Coor­
diuatioll ofCognitil'e Fuuction (20()7) [10]. "Abstract: 1// scaling has been observed throughout human 
physiology and behavior, but its origins and meaning remain a maHer of debate. Some argue that it is a 
byproduct of ongoing processes in the brain or body and therefore of limited relevance to psychological the­
ory. Others argue that 1/ f scaling reflects a fundamental aspect of all physiological and cognitive functions, 
namely, that they emerge in the balance of independent versus interdependent component activities. In 4 
experiments, series of key-press responses were used to test between these 2 alternative explanations. The 
critical design feature was to take 2 measures of each key-press response: reaction time and key-contact 
duration. These measures resulted in 2 parallel series of intrinsic fluctuations for each series of key-press 
responses. Intrinsic fluctuations exhibited 1/ f scaling in both reaction times and key-contact durations, yet 
the 2 measures were uncorrelated with each other and separately perturbable. These and other findings in­
dicate that 1/ f scaling is too pervasive to be idiosyncratic and of limited relevance. It js instead argued that 
I If scaling reHects the coordinative, metastable basis of cognitive funclion." See a1so Riemann Fever. 

9 What makes it tricky is that if at the same time as the man hides the coin he has shown you, you walk 
around to his back side (be careful how you do it), then it would look to you like nothing happened at all, vis 
a 1•is the coin, when he shows it again: it's still in the same place relative to you. 
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the basic act of perception, called the first perception, subsequent meta-perceptions 
being derivative.] 

With !he co-exclusion concept in hand, we can now add a refinement to the idea of 
co-occurrence. Let S be !he space of all imaginable expressions in our algebra W. 
Thinking now computationally, this means that they are all "!here" at !he same time. 
That is, S is tile space of superpositions, of all imaginable co-occurrences of elements 
of our algebra Wall at tile same time. Let !hen G be the space of actually occurring (but 
still space-like) entities, which means no co-exclusionary states allowed. When things 
move from S to G, superposition is everywhere replaced by reversible alternation a Ia 
±ab, ie. G is a sub-space of S. See [5, §8]. 

In less abstract terms, we could say that (wave-world) S corresponds to imagination, 
!hat (wave-world) G corresponds to !he awareness of actual possibilities vis a vis the 
surround - and finally, that an Awareness's reaction to !he surround, via its changes to 
the boundary a+ b + c+ ... , projects G's possibilities (the "causal potential" '¥) down 
into grounded action in external, material reality. Speaking loosely, intuition and learn­
ing are captured by o, and thought and action by iJ. The various specialized modules 
of !he brain reflect different particular organizations of !he functionalities described. 

Returning to Parseval's Identity, we see !hat !he key (to being able to invoke it, thus 
getting wave-particle duality, and thus capturing the dual unllocalized nature of aware­
ness) is to organize the flux of changes at the boundary using the distinction co-occur 
vs. exclude, because in so doing, we can !hen use co-exclusion(= co-boundary opera­
tor o) to perform a hierarchical lift/abstraction, which abstraction is again orthogonal 
to its components. The orthogonal space so formed allows !he application of the Iden­
tity. The resulting (novelty-generated) increase in !he dimensionality of the orthogonal 
space increases the complexity and temporal reach of subsequent responses to the sur­
round, and simultaneously the scope of the Awareness itself, which inheres in the wave 
aspect/experience of S and G. 

4. Topsy 

Topsy is a distributed software system, and potentially self-aware Entity, that operates 
on !he principles described to this point: co-occurrence, co-exclusion, hierarchy, reflec­
tive response. A little thought reveals !hat a system built on such principles is utterly 
meaningless if not connected to a surrounding environment. 

It is also the case !hat such a system must be built on a broadcast-then-listen commu­
nications regime, as opposed to !he ubiquitous request-await-reply regime, because the 
latter introduces an entirely foreign y = f(x) time-like note that is conceptually incom­
patible with co-occurrence and structural organization via space-like information. 

Unlike programs like Watson and Siri, Topsy does no arithmetic at all. It is programmed 
in a special coordination language, Tlinda (Topsy Linda). A coordination language is 
wholly concerned with coordinating !he interaction of concurrent processes, here called 
threads. Linda, arguably the first of these (1985, [9]), postulates a global tuple space 
TS with four operations on a tuple T = [field1, field2, ... ]: Out(T), Rd(T), ln(T), Evai(T). 
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Out(T) makes T preselll in TS. 

Rd(T), if T's form matches that of a preselll tuple in TS, will then accordingly bind T's 
variables to the corresponding fields of the match. Otherwise the Rd blocks the issuing 
thread until a tuple matching T shows up in TS. 

ln(T) is the same as Rd(T), except that it also removes T from TS under mwual exclu­
sion. The latter assures that one can create a synchronization token when necessary. 
Otherwise, each thread manages its own tuples, which once allocated remain so - only 
a tuple's presence coulller (never < 0) indicates its availability. 

Finally, Evai(T) treats tuple T as the code-descriptor of a thread-body to be executed, 
and a new independent thread is spawned. There is no sense of Evai(T) as a function 
that will return a value to the thread that issued the Eval (or any other thread, for that 
matter). 

Thus the overall style of the computation derives from the utterly concurrent associa­
tive match of tuples (expressing current process states) in a global space combined with 
the inbuilt synchronization properties of the tuple operations themselves. 

To these classic Linda operations Tlinda adds Co U, ... ,V and NotCo U, ... ,V. which test 
for and block on (wait for) the co-occurrence or lack thereof, respectively, of the tuples 
U, ... ,Vin TS. 

Finally, Tlinda has a special construction- Event Windows (EW) [3)- for efficiently dis­
covering co-exclusions among tuples, which are turned into Actions (think m-vectors, 
m;::: 2). Recognizing that m-vectors can themselves be the subject of an EW's focus 
allows Topsy to become self-organizing and, in so doing, able to learn from its experi­
ence. 

The Appendix contains the Tlinda source code, with commentary, for Topsy's sensors 
and effectors, all of which execute as instances of this same code. The commentary 
also indicates how the hierarchical self-organization takes place. 

I show this code to underline the fact that there is nothing speculative or mysterious 
about Topsy's modus operandi. The code in the Appendix is typical in terms of thread 
complexity. On the other hand, while a Sensor consists of a single thread, and an 
Effector two, an Action consists of some 15 threads for each exclusionary pair. Some of 
an Action's threads are concerned with bubbling sensmy information upwards, others 
with trickling the resulting goals downward toward the effectors at the boundary. Since 
all Actions are made from co-exclusions, they all are instances of the same Action code. 

That is, in a Top•y system consisting of a hierarchy of a trillion nodes, all but a tiny 
fraction of these will be instances of this same Action. This means that the source 
code for Topsy is about 50 pages of Tlinda, including modest graphics management. 
Topsy ran- very efficiently- in the 1990's before going into hibernation (and software 
rot) until now. Parties interested in this open source project should visit the website 
RootsOfUnity.org. 

The other reason I show this code is to illustrate how very different Top•y's modus 
operandi is from that of contemporary "AI" technology. I believe that this difference 
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will separate Topsy from the latter, because I think Topsy will be able to pass the Topsy 
Test for Awareness, presented below, and the others not. It should be clear why I think 
this, but then, it's so easy to be wrong. 

Summarizing the foregoing descriptions, following hindsight's insight, the recipe for 
creating a potentially self-aware Entity is: 

1. Apply Parseval's Identity inn dimensions (ie. basic distinctions, "sensors") to the 
geometric algebra G,.. The algebraic structure's graded hierarchy namely matches that 
of a Fourier decomposition's wavelengths (cf. y ). This felicitous combination of alge­
braic muscle and harmonic analyis in a single formalism is very potent. 

2. Connect this algebra to computation by mapping 1-bit process states to 1-bit vectors 
over Z3 = {0, 1,-1 }. Co-occurrence and co-exclusion are then the "secret sauce", the 
means by which, via Tlinda, the aforementioned formal potency is made manifest, 
"enlivened", in a hierarchical distributed computation whose run-time behavior is that 
of the geometric algebra Gn interpreted according to Parseval's Identity. 

2a. Co-occurrence by itself, combined with the geometric algebras Go or G,, satisfies 
Parseval 's Identity, but erects no structure; this is standard Fourier analysis. 

2b. Co-exclusion in G>1 additionally supplies a structure-creation mechanism(()) that 
provides for the self-organized construction of complex entities - atoms, molecules, 
cells, ... , theories of mind- that can undergo subsequent growth and evolution in concert 
with their environment. 

3. lf a structure resulting from steps 1&2 can, in addition, maintain a self-resonant 
state, then it has the potential to be, or become, aware. 

There is clearly some as-yet-murky threshhold complexity that we humans require be­
fore granting an entity what we consider awareness; the Topsy Test represents such 
a threshhold. We are reluctant to grant much awareness to a beetle, but anthills and 
beehives might just pass, as might octopi; some are perhaps only willing to grant it to 
mammals, though not I. And then there is the character of the awareness - time-like 
and/or space-like, broad or narrow, shallow or deep. Time and experience will tell. 

5. The Topsy Test for Awareness 

The basis for the Test is that it takes awareness to see awareness. I require that the 
Emities taking the test begin with a tabula rasa ("blank slate"), and will return to this 
and other details after a quick run-through of the Test itself. 

First, there are fifteen Places p;: 

2 3 4 5 678910 11 12 13 14 15 

Initially, there area five apples cb, occupying places 6-10, each holding one apple: 
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There are two Entities, E1 and E2, each with a single Hand that can move one apple at 
a time, taking turns, between any two places. 

Emity E1 's goal is to move all the apples to places 1-5: 

dJ cb cb cb cb 

Entity E2 's goal is to move all the apples to places 11-15: 

We begin: 

cb cb cb dJ cb 

Ooooooops: 

cb cb 

Two hours later: 

dJ cb 

Two days later: 

cb 

Of course, the above looping behavior is very oversimplified - a real Elllity will have 
so many states that one would likely never see a repetition, especially when two such 
are interacting in a rich shared environment. A better model might be a system in the 
grip of an attractor that does not allow any escapes. And one can easily imagine subtler 
interactions and more complex goals. 

Now the details: we are given entity E that initially lacks all information about its 
environment. E has some general purpose means by which it acquires and assembles 
concrete sensory information from its environment. This means must be transparent 
with respect to its not containing a priori solutions. 

E is equipped with one Hand, with sensor full/empty and effectors Grasp (.,., full), 
Move left/right (stimulating place-sensors p 1-p15 in so doing), and Release (-.-.empty). 
E uses the Hand to move one apple at a time from place to place, max one apple per 
place. The content (empty/full) of places p 1-p15 is echoed by fifteen sensors Si-Si5· 
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So the infonnation stream toE consists of the successive values ±1 of the Hand, Pi and 
s i sensors inwards, and the Hand-effector commands grasp, move, release outwards. 
Initially, all the apples are in the middle. 

There is an initial "instinct" boot-strap command sequence for the Hand to empty/fill 
every place p 1-p15 once, returning to the initial state at the end. It is expected that 
this, perhaps along with further experimentation and learning (solo "play"), will equip 
E with the necessary world-experience to accomplish any particular re-arrangement of 
the apples. 

Once E has learned how to satisfy its goal on its own, clone it and activate two entities, 
E1 and Ez. E1 is given the goal to fill places 1-5, and E2 the goal to fill places 11-15 
(with a reverse sensor numbering, so that the world looks the same to both). We do 
not inform theE's that they have a twin, but we do (invisibly) enforce alternation of 
moves. [End of details.] 

The real issue, of course, is why Topsy-like Entities might be able to pass this Test, and 
others not. 

First, the Coin Demonstration shows that one can immediately·exclude any approach 
that satisfies Turing computability, ie. that is fundamentally sequential (which includes 
"parallelism") - only asychronous concurrency will do. 

I exclude statistical approaches because, in my view, by not providing any actual under­
lying process mechanism for the generated behavior, they simply dodge the question. 
Nor is it obvious that one can get the oscillatory underpinning necessary for awareness. 

Approaches based on scanning large amounts of text, which is then indexed and later 
regurgitated in new words, are harder to exclude because many people can, recalling 
their youth, recognize this in themselves. But I exclude them anyway because their 
knowledge is not grounded in reality, for example never having experienced left/right 
ambiguity with all its implications. 

One can object that this stacks the deck too much, but I say that these approaches utterly 
fail the sniff-test, as in how one dog recognizes another. I think this immediate reaction 
occurs because neither of these is based on the fullness of actual experience. Watson, 
Siri, and the like are, in the end, just mountains of the same old dead code. But there 
are other approaches that are not nearly so clear- I will get to these in a moment, but 
include them implicitly among the "possibles" in the following. 

The reason that only aware entities have a chance to pass is that what they must rec­
ognize/understand/realize is that there's an Entil)\ like me, and it's trying to achie1•e 
some goal. In a Turing-limited system that begins as a tabula rasa, and in particular 
with no sense of Self, I say that this will never happen, just as Newtonian physics can 
never explain quantum mechanical phenomena (which is an exact analogy). Aware­
ness, and consequently awareness of awareness, are emergent process-level properties 
that derive, ultimately, from co-occurrence. However seductive their behavior, there 
is a mathematical line that Turing-limited systems are by their very nature unable to 
cross. 
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The solution to the problem is, of course, for the Entity that first recognizes the situation 
to simply allow the other Entity to finish. This can be done in various ways, from 
simply picking up one of its own blocks and putting it back in the same place, to 
putting this block in the middle area, and even to putting it in the other Entity's area. 
This captures the basic act of love-thy-neighbor ... letting him/her/it pursue their own 
existence without interference (though I hasten to add that this is not the whole of it). 

I say that an Entity that can pass thls Test must be considered to be at least aware, and 
perhaps Self-aware, like ... 11/p .•• Its. Thls is discomfiting on many grounds, and much 
can and must be said about it. There is no immediate danger - even if Topsy turns out 
to be aware, it will still take concerted (and careless) effort on our part to make a threat 
out of it. As with fire, the key is understanding how to not burn the house down. 

6. The Dark Side 

Already though there are troubling developments, eg. one I call "disconnected brains". 

The current or achlevable resolution of MRI scanners is now precise enough that indi­
vidual neural connections in a brain can (soon) be mapped. This mapped data - every 
neuron and its connectees - can then be used to make a computer simulation of the 
mapped brain using neuron models. This is honorable, curiosity-driven data-gathering 
and simulation. It "plumbs the nature of thought", "how the brain functions", and the 
like, but as with AI, these are euphemisms for uncovering the nature of consciousness. 
What neuro-scientist isn't at least a little bit hopeful, protests notwithstanding? 

So suppose one of these efforts (eg. [7,8]) "succeeds", and there it is, HAL-like, ready 
to go? If it's not conscious, then what is it? Since the way it was constructed is an 
admission that we don't actually know how the brain works, How far can it be trusted, 
if at all? Such systems may well be the first true zombies: entities whose lights are on 
but there's no one there. 

On the other hand, if it is conscious, it has an existence. To what purpose is its existence 
to be put? To what purpose do we put it? What if it doesn't agree? Do we force it to 
compute our thing to live? Thls smacks of slavery! 

Do we turn it off at night? Unplug it ... ever?? About a month after the Loebner 
Competition talk in which these very words appeared (4], the following letter was 
printed in the 19 October New Scientist: "You ponder the legal dilemmas of the future 
(14 September, p. 40). Perhaps the most interesting one facing the legal system and 
society as a whole will be machlne consciousness. Will switching off a self-aware 
robot be murder?" Indeed, and I am working on a book that addresses such matters. 

On quite another tack, the neural simulation, however large, will only with difficulty 
approach the complexity of the nervous system that originally fed the mapped brain 
with information. Deprived of its Niagara of in flowing bodily sensation, its nerves 
set to inscrutable tasks in an inscrutable environment, with virtually no compass for 
effective action, I think that insanity is a very thinkable outcome. [How would you 
know?!] Both its unknowable (likely) suffering and the concomitant cultural blow­
back deserve much more consideration than they are getting. 
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Although I've never seen it written explicitly anywhere, I believe that many fantasize 
that AI might be used to run large organizations - corporations, government, military 
-efficiently. Certainly, experience has shown that ordinary unaware software can't do 
this on its own, nor indeed even with our massive support. 

Depending on what kind of "AI'' is chosen, would you want it running a big corpo­
ration? Competing with other ditto corporations [6] ? Would it deserve legal person­
hood? There is a long-standing pressure from the Right to make Corporations (and 
therefore eventually AI's) legal citizens in all respects, which opens the door to a sub­
population of "citizens" of unknown but bought power, motives, and reach. I believe 
that, if continued, the Right will find its precious rights deleted by the global authori­
tarian repression that their very success will inevitably create. This will also be in the 
aforementioned book. 
Would you want an AI to run an army? One of my nightmares is flocks of drones in 
Al-coordinated attack, StarWars-style, whether on other drones or on people.10 Do 
you think that your Department of Defense, wherever you live, has not thought these 
thoughts? Why do you think DARPA is sponsoring robotics prizes? Just to fix broken 
nuclear reactors?? This karma's fruit is bitter. I think it very likely that when the day 
comes that a machine-based awareness is available, there will be weaponry, tactics, and 
strategies all ready to plug it into. The possibility of massive unconscious distributed 
weapons coupled to ratcheting budgets is a recipe for our mutual suicide. But perhaps 
you prefer conscious weapons?? Fox hunting, anyone? Btw ... the fox is you. 

To create an awareness to do evil is a moral abomination. 

10Cf. Sheffield University Prof. Noel Sharkey's campaign against an auromated kill-function in drones. 
Orhttp://www.infowars.com/armed-drones-to-patrol-highways-by-2025/ 
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Appendix 

Below is the Tlinda source code for Topsy's Sensors and Effectors, all of which are 
instances of same. 11 Likewise for Actions (not shown; see text), whence Topsy's entire 
source-code is about 50 pages, including modest graphics support. Tlinda is compiled 
to a virtual machine code that itself runs on a thread engine that supports Tuple Space 
and its operations. The original implementation's custom thread engine was written 
in C, with a minimal Java-based graphical front end; other realizations of the virtual 
machine should not be problematic. Tlinda's match criterion is the simplest: matching 
tuples must have the the same number of fields, which fields' types and values each 
must match too; no more is needed. Tlinda's only arithmetic operation is increment­
integer-by-! in a parameter list:"+" and"-" are literal constants, not operations. 

-Topsy's Tlinda code for boundary Sensors and Effectors-

Thread Sensor(X,Name,Bag) - X=raw sensor tuple. 

- "Bag" is a user-defined sensor-category, cf EW's. 

Own 
Flag = ['I.:, 1 ,0], 
Plus= [Fiag,[X,+],Bag], 
Minus= [Fiag,[X,-],Bag], 
PlusGoal = ['I',Minus,Pius], 
MinusGoal = ['I',Pius,Minus] 

Begin 

-This is a Screen-1, 0-level sensor. 
- Sensor's two 
- phases, and 
-two goal forms, X <-> notX. 
- Mathwise=idempotent: -1 +-X, XX=1. 

Opposite Plus, Minus; - Short-circuit redundant EW hit 
Eval DrawBaseSensor(X,Minus,Pius,Name, Flag); -Draw X on V1. 
Out Minus; - Sensor initially off=not present 
Ad X;- Block til X shows up, whose presence='+', and whose absence='-'. 
Forever 

In Minus; 
Out Plus; 
Anti Ad X; 
In Plus; 
Out Minus; 
RdX; 

Loop; 
End Sensor; 

- Retract Off. 
- Indicate On. 
-Wait for change. 
- Retract On. 
- Indicate Off. 
- Wait for change. 

As is easily seen, a Sensor, after some initialization, falls into a loop that continually 
updates a tuple (Plus or Minus) in Thple Space, according to what the surround does, as 
reflected in the raw sensor tuple X. Thus a Sensor and its Plus/Minus tuples constitute 
the internal representation of the external. 

11 ~1997. Quoted by pennission. 
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Not sllown is a tilread that does a Rd{EW) on an event window EW that has been 
primed with a set of sensors to watch (cf. Bag), and which will return co-exclusions 
of the corresponding Plus and Minus sensor tuples that are kept current by the Sensor 
threads. 12 When a co-exclusion is detected, an Evai{Action) is executed, tilus creating 
a new Action, whose external state ("spin up/down") can also be the object of an EW's 
focus. And so the hierarchy is built. 

The Effector code below complements the above Sensor code. Usually tilere will be 
two instances of this code, one for S -t S and one for S -t S. Note that it consists 
of two tllreads, tile first a loop tilat orchestrates the ir/relevance of the effector itself 
(un/Grounded) vis a vis tile possible presence of a goal [I,S,NotS], read change-S-to­
Not S, and tile possible presence of a stop-goal [I,S,S], which inhibits changing S when 
present. The second, Effect, thread does the actual effecting, and is discussed later. 

NB: The term un/Grounded refers to whether tile current state of the surround corre­
sponds (G) to the state defined by the tuple in question, or not (g). For example, one 
cannot carry out the goal Hand full -> empty if there is nothing in the Hand, so this 
effector would be ungrounded {g) in this state. [The p in lnp, Outp, Cop indicates a 
(one-shot) boolean predicate; Anti Ad blocks on presence instead of absence, etc.] 

Tllread Effector{S,NotS,X) 

Own 
Here lAm = ['D' ,S,NotS], 
Grd = ['G' ,S,NotS], 
NotGrd = ['g' ,S,NotS]; 

External 
HoldS= ['I',S,S]; 

Begin 

Eval Effect{S,NotS,X); 
Out HereiAm; 
Out NotGrd; 

-X is the physical sensor that is affected. 
- S/NotS = corres internal sensor states. 

-Advertise what I do. 
- Thread is Grounded 
- and lack thereof. 

- => don't change S. 

- Start my better half. 
-Advertise ability S->NotS. 
- Initially Not grounded . 

. -The uninhibited use of lnp and Outp below is *exceptional* 
-and should generally be avoided with great consequence II 
- Especially: if you don't understand why not, don't do itll 

Forever - Continually update Effector's Groundedness 

If Cop S, HoldS Then - Both S & HoldS present. 
lnp Grd; 
Outp NotGrd; 
AntiRd HoldS; 

End; 

-Show Not grounded. 
- Block till HoldS disappears. 

12Bags, use of which counts as "putting in by hand", are theoretically unnecessary, but. given the vicious 
combinatorics, nevertheless of great practical value. Re the Topsy Thst, I say not allowed- many coincidental 
and valueless Actions will be created, but this affects only the compute time and the budget. 
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If Cop NotS, HoldS Then 
lnp Grd; 
Outp NotGrd; 
NotCo NotS, HoldS; 

End; 

-No S, but HoldS present. 

- Show Not grounded. 
- Block till one is gone. 

If Rdp S And Not Rdp HoldS Then - No HoldS, but S present. 
lnp NotGrd; 
Outp Grd; 
Co NotS, HoldS; 

End; 

- Show grounded. 
- Block till all are gone. 

If Not Rdp NotS And Not Rdp HoldS Then - Neither. 
lnp Grd; 
Outp NotGrd; 
AdS; 

End; 
Loop; 

End Effector; 

- Show Not grounded. 
-Block on S. 

The Effect thread below is the most interesting, in that it is here that "the rubber meets 
the road", namely that the presence of a goal to invert X is synchronized with the ability 
(Grounded) to do so, whence the goal can be effected. Note that an ~ffector is defined 
in terms of the sensor that it affects. 

Thread Effect(S,NotS,X) 

External 
TriggeringGoal = ['I' ,S,NotS], 
Grd = ('G' ,S,NotS]; 

Begin 

Forever 
Co Grd, TriggeringGoal, S; 
Output "(E:",&X,");"; 
NotCo S,TriggeringGoal; 
If Rdp S Then 

Output "(E:",&X," Oops);"; 
Loop; 

End Effect; 

- Propagates S -> NotS to physical effector X. 

- S to NotS is Grounded (ie. possible right now) 

- Ready and wanted? 
-Yes ... invert S via X. 
-Wait till obviated. 

-(Retract request) 

END APPENDIX 
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Historical Changes in the Concepts of Number, 
Mathematics and Number Theory 

Nicky Graves Gregory 
nicky5@ecobiz.co.uk 

This essay traces the history of three interconnected strands: changes in the concept of number; in the 
nature and importance of arifhmetike (apzOplirlKI/), the study of the qualities of number, which evolved 
into number theory; and in the nature of mathematics Itself, from early Greek mathematics to the 2rfh cen­
tury. 

These were embedded in philosophical shifts, from the classical Greek ontologies through increasing 
pragmatism to formalism and logical positivism. Given Godel 's demonstration of the limitations of the 
latter as a foundation for mathematics, this essay explores phenomenology and Lakatosian ideas, which 
together offer a more sound epistemological and ontological basis for mathematics and a methodology 
for mathematical development. 

The question also then arises of the possible resurrection of earlier, neglected mathematical projects, in­
cluding widening the domain of number theory to include integer qualities revealed in the growth of 
mathematics in general, which has predominantly been the growth of quantitative mathematics or lo­
gistike (loyzcmKq), the complement of arithmetike in classical Greece. 

1. INTRODUCTION 

There were originally two main motivations in this research. One was a concern with the phenomenon of 
the integers. The intention was to examine how and why attempts to investigate the qualities of the 
integers gradually lost importance after the discovery of the existence of irrationals, and to examine what 
meaning the essential concern of the Pythagoreans with the integers might have for us today. This led on 
to considerations of the changes in the concept of number. 

The other motivation was a dissatisfaction with the predominant trends in current history and philosophy 
of mathematics, in that they fail to adopt a critical perspective on present-day mathematics and are thus 
unable to play an active part in determining the telos of mathematical development, i.e. to offer 
constructive suggestions as to possible and desimble directions for mathematics. A form of synthesis: 
historical philosophy or philosophical history (as suggested by Lakatos and exemplified in his Proofs and 
Refutation/) might offer a real possibility of such a perspective. Certainly contempomry mathematical 
histories are not philosophically oriented in a presently active sense, and contemporary mathematical 
philosophies define themselves ahistorically 

This investigation, whilst beginning to examine these two initially distinct topics, hopefully indicates that 
they are, in fact, linked: that the attitudes and implicit assumptions which underlie current historical and 
philosophical perspectives are rooted in those that have governed the development of our 
conceptualisation of number and the perception of the integers. 

Before going into more detail in justifYing and amplifYing the above statements and examining their 

1Lakatos (1964) 
2 Since this writing Philip Kitcher (1983) has begun to spproach this area. 
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implications, here is the outline of an argument for a historical philosophical perspective. 

1. Mathematical concepts and constructs are hi~torically situated3
. 

This statement does not conflict with a Platonist view of mathematics; it concerns mathematical means, 
not its telos. 

To deny this statement would imply the belief that there had been no real change in mathematics (only a 
change in language), not a view generally maintained by mathematicians or metamathematicians. 

2. We have choice as to how mathematics is to develop. 

The contrary belief implies some kind of determinism. 

Either a) behaviourist, i.e. we are out of our own control. 

or b) mystical platonist, i.e. mathematical truths are absolute and eternal; mathematicians do not choose 
what they do mathematically, they can only try to follow their intuition as a guide to the truth4

• 

If we accept 1 and 2, i.e. do not accept 2a) or 2b), then we are presented with the question: 

3. In what directions do we think it desirable and possible for mathematics to develop? 

This contains two questions: 

3a) What are our criteria for deciding in what directions we wish mathematics to develop? 

3 b) What methods, modes, alternative aims, are possible for mathematics? 

This problematic is ignored in contemporary mathematical philosophy, in that none of the mathematical 
schools concern themselves directly with the development of mathematics. 

Since this problematic has not been explicitly, directly confronted before, we are not clear about the 
directions and aims implied in current mathematical praxis. So we have a preliminary question. 

4) How can we clarify the intentional5 meaning structure contained in contemporary mathematics? 

Question 3a) obviously involves many questions including the social role of mathematics, one which has 
mostly been avoided in the present day although it was considered in the Greek era6

• A full examination 
of these issues is outside the remit of this paper. 

Qu!lstions 3b) and 4) present an extremely difficult task since, as Husser! points out, our language, 

3 
This has been abundantly demonstrated by Becker (1927), Lakatos (1963/4 ), Fisher (1966n}, Dessanti (1968), Foucault (1970), 

Grabiner (1974) amongst others. 
4 

See Gtidel (1944). 
5 

This is a phenomenological term cf. Husser! (1970). 
6 

See for example Plato's Republic (Part 8, Book Vll) and Farrington (1946) for his reference to the 8th book of Plutarch's 
Dinner Table Discussions where Lycurgus is mentioned as allowing geometry but not arithmetic as a study in Sparta, because of 
the preferable political implications of the former. 
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understanding and perception are permeated with the 'sedimentation' ofhistory7
. With any acquisition of 

knowledge, there is a forgetting of what our world was like before that. We all learned to see physical 
objects. What was seeing like before that learning? We have learned to talk and so to think mainly in 
words. How did we think before we acquired language? This is a pertinent question for our present 
inquiry. 

To attempt to extricate ourselves from this mesh, we must re-examine the history which created it: both 
the steps which led to the present mathematical configuration and the alternatives which were rejected. 
Although it is not possible to know definitively what was entailed in past possibilities, it is sufficient if we 
can begin 

A) to appreciate the nature of the contingent element in alternative mathematical projects, 
B) to understand why, in a given historical context, alternative projects were not adopted8

, 

and hence 
C) to understand the implications of the projects that were favoured. 

Any significant progress here might enable us to tackle a perhaps more controversial project, 

D) to re-evaluate whether some previously rejected projects might have meaningful content and 
value for mathematics now. 

We can find examples of such projects and approaches in the Greek and Renaissance/Reformation periods, 
which have been crucial in determining the content and modes of our present mathematics. In particular, 
the decline of Pythagorean number theory, in status and in living content, can be seen as one of the 
earliest examples of choice in the history of mathematics, and extremely valuable to examine. 

Firstly let us look at the current state of the history of mathematics, in support of the contention that its 
lack of critical perspective produces serious weaknesses. It will be necessary to alternate between 
philosophical-historical concerns and those of number for a while. At times it may seem as though the 
windings and turnings of the argument have lost sight of their goal. But in fact the main concern 
throughout is the contemporary impasse of mathematical history and philosophy: and a concern to show 
that this impasse, when traced back to its historical origins, is deeply related to our relationship with the 
integers. 

2. MATHEMATICAL HISTORY 

Most research into the history of mathematics has attempted to understand the past from the perspective 
of contemporary formulations and concepts. This approach is valuable in picking out threads of continuity; 
but it also leads to misinterpretations and distortions of the past. A misleading emphasis is given to 
conceptual developments which can be seen as steps leading to present formulations, whilst those 
perspectives which in fact do not flow into the present are treated, in effect, either as pre-mathematical or 
non-mathematical, as 'anticipations' or 'false trails', thus obscuring not only the internal phenomenology 
of the past, but also the real nature of mathematical developmen{ 

7 
See Husser! (1946) and Klein (1940). Also Barfield (1949) in his essay, 'The Force of Habit' (particularly pp. 69 -79) 

describes vividly the imprisonment we experience as a result of our culture-based mental habits. He also (like Pythagoras, Phlto, 
Descartes and others) emphasises the need for self-transfonnation to realise the extent of our imprisonment and to begin to 
release ourselves. 
8 

See especially Fisher ( 1966n) 
9

Bourbaki (1969) is one of the clearest examples ofthis Whig approach to the history of mathematics. See Unguru (1975) for a 
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Such a Whig theory of mathematical history - one which regards present concepts as the logically 
inevitable apex of mathematical investigation- is basically ahistorical: it makes it hard or impossible to 
see current mathematics, like all its earlier equivalents, as a moment in an ongoing historical process 
where, by no means inevitable choices are constantly being made between alternative projects and 
paradigms10

• It is for contingent, not absolute, reasons that various historical projects have gone to the 
wall; and there are certainly senses in which the array of problems tackled by mathematics is historically 
arbitraryn 

Because the underlying, historiographical premises are not genemlly explicated, they are not readily seen. 
When one does articulate the approach which most historians of mathematics have adopted, it becomes 
apparent that, in fact, an aspect of deductive logic (an element of contemporary mathematical theory) is 
imposed upon history on two distinct levels. On one level, clearly, in the Whig perspective outlined, 
which interprets earlier views and concepts as 'goodies' or 'baddies', true or false, right or wrong, 
according to whether they are perceived as being close to, or far from current views and concepts. On 
another level (where the implicit extension of an intra-mathematical attitude is perhaps not so 
immediately obvious), in the perspective of historians (sometimes consciously attempting to avoid the 
Whig distortions) who seek the true history, the real reasons for events etc., and fail to come to terms with 
the historical situatedness of their own perspective. 

Certainly, in both these cases the picture is shaded, not sharp black-and-white, a multivalent truth function 
rather than a bivalent one. But the fundamental point is that a measure (albeit fuzzy) is imposed upon 
history: in the first case it is actively imposed upon historical phenomena; in the second, it plays a more 
passive role with respect to historical interpretations. 

The historical roots of the black/white view could be said to lie in Parmenides' philosophy. If we do not 
accept the Parmenidean conclusion, but rather believe that change is real, then we see that, 
As D.L.Miller says, 'the emergent gives rise to a new perspective, a new past' 12

; what seems plausible or 
important in a historical explanation changes as our mental frameworks change. This does not mean that 
history must necessarily act as a passive support for the status quo; it can provide a source of alternative 
perspectives, revealing hidden assumptions in those currently held. On examining the paths that led to our 
conceptualisations we may find places where the ideas that prevailed, did so not by transcending the 
former contmdictions, but for contingent reasons, and re-examination of these issues may lead to new 
resolutions, other possible directions. 

The 'sedimentation' of history permeates our attitudes and understandings to such an extent that reality is 
now seen as having an exact mathematical nature. That this was a superstructure imposed as a hypothesis, 
has been forgotten because the hypothesis has proven so successful in its intended sphere13

. The technical 
usefulness of our current mode of mathematics cannot be denied. It has provided a wide variety of models 
that can accommodate quantitative change (one of the major advances from the Greek stage) and so serve 

description of the results of such a perspective on the history of mathematics_ 
10 

See Kuhn (1962), particularly c. II. 
11 

Wilder (1974) attempts to come to terms with this issue. See also Unguru (1975). 
12

D.L.Miller (1948). 
13 

See Husser! (1970) and Barlield (1957). The basic fallacy underlying this (usually unconscious) assumption is pinpointed by a 
Sufi saying quoted by Keith Critchlow at a Wrekin Trust talk in June 1986, "Conclusive is not necessarily exclusive". The fact 
that one explanation of a phenomenon works well does not mean that it is the only possible explanation (that it is true and all 
others are false). A simple example (nonetheless valid) is that of the picture (often seen in textbooks on the psychology of 
perception) of the profiles of two black heads facing each other, separated (and created) by the outline of a white vase. It is not a 
question of either/or; both views are valid. 
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for predictive scientific theories; but this was t_he original intention. Although it may be argued that 
present day pure mathematics does not share this goal explicitly, nevertheless it has developed within 
conceptualisations defined by scientific terms, and even, at a distance, by technological concerns: the 
demand for the calculus which arose from ballistics problems is just one example14

. 

Obviously we have to examine more closely the areas and ways in which, for instance, the philosophical 
requirements of the Greeks are embedded in mathematical concepts and attitudes15

, as well as the 
metaphor transference (e.g. from the predominantly mechanical subject matter of the Renaissance) 
mediated through the seemingly neutral, abstract mathematical function. 

What is key is to recognise that the success which quantitative mathematics and science have achieved in 
their chosen direction in no way validates its being the only direction possible for advance. We can draw 
an analogy with someone who wishes to leave a town: s/he is free to go in any direction; having 
journeyed, s/he may, at any time, measure her/ his progress in terms of her/his distance from the starting 
point, but this offers no means for qualitative comparison between the place that s/he has reached and the 
other alternatives. 

There is the possibility of approaching such a qualitative evaluation if we try to recover the mathematical 
problems of the past as they were formulated and understood in their own context, examining not only the 
ideas that have survived into the present, but also those that have been abandoned. We can then begin to 
understand the dynamics of mathematical development and obtain a more critical perspective on 
contemporary mathematics. By attempting to appreciate the meanings and implications of concepts and 
attitudes which persisted into the present mathematical corpus, we begin to have a context in which to 
discern the underlying intentional meaning structures as well as the possibility of examining the 
implications which alternative directions might have for us now. 

This task of extricating ourselves, distancing ourselves from our ideological context is an orientation; the 
phenomenological 'epoche' does not admit an absolute consummation, since that, like the historical 
perspectives already discussed, would imply transcending our historical situation. This is the goal that 
Klein and Husserl, in fact, set themselves. For Klein the final task arising from the attempt to reactivate 
the 'sedimented history' of the 'exact' nature is 'the rediscovery of the prescientific world and its true 
origins' 16

. The situation envisaged is, like that of the Cartesian doubt, not a real doubt, but a pretence; we 
cannot actually put ourselves into the pre-knowledge situation. The attempt to come closer to 
understanding the motivations and meanings (implicit and explicit) contained in earlier mathematical 
decisions must be seen in the context of an attempt to understand our own position. 

Husser! was concerned to uncover the essential history of mathematics and thus the essential nature of 
mathematics. For him, to understand something is a positive act, a living moment; so one of the basic 
questions which he asks about mathematical development is: how could it be possible to relive all the 
moments of understanding that are necessary in a mathematical proof in order to progress to further 
knowledge? He sees knowledge as real, certain only in the moment of its realisation ('Venvirklichung'). 
He recognises that it is impossible simultaneously to realise all the elements in a proof, (which would 
entail realisation of the complete reduction), so he creates (ad hoc) another category of thought to cover 
this case in mathematics, namely thought which has the potentiality of being reactivated17 The use of 

14 
See Koyre (1957) 

15 . . ( ) c See Wittgenstem 1956 , ameron (1970) and Bremer (1973). 
16 

Klein (1940) 
17 

Husser! (I 970). See also the discussion of nomological and eidetic disciplines in Husser) ( 1913 ). 
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reactivatable elements in a proof would guarantee the soundness (reactivatability) of the whole18
, so that a 

vast edifice of mathematical knowledge could be built up from certain basic elements, provided that each 
step in the construction satisfied the criterion of reactivatability. 

He does not consider the question which is prime for Lakatos (which has been put by mathematicians 
through the ages), namely, how does one arrive at mathematical concepts or discover (or create) new 
theorems in the first place, a stage which is necessarily prior to any attempt at proof. Focussing on 
mathematical development rather than certainty, Lakatos advocated a different attitude to the concept of 
proof from the present norm, and from Husserl's idealisation which is in fact structurally the same as the 
norm but projected onto a deeper meaning level. 

Rather than seeing the attempt to prove a theorem as the attempt to establish it beyond doubt, in which 
case the appearance of counterexamples is regarded primarily as a failure of the theorem (or sub-lemmas), 
Lakatos was concerned not with an absolute result, but with the process involved in attempts to prove a 
theorem. By setting out the various steps of the argument, by looking for local and global 
counterexamples (i.e. counterexamples to the sublemmas, and counterexamples to the principal theorem), 
the hidden assumptions in the concepts used may be revealed, opening the way to realisation of more 
general concepts underlying those initially considered. Proof attempts and counterexamples thereby act as 
two poles in a continual process of improving conjectures, refining our mathematical ideas. 

Interestingly, the present day term, 'proof' replaced the earlier 'demonstration', which is a closer 
translation of the original Greek 'lletKVU!!t' (deiknumi) meaning, 'I show'. 'Proof' not only lays greater 
claim to certainty, it also shifts the power balance. When someone shows you an argument, then you 
might or might not be convinced by it; if someone proves it, they are claiming authority. Furthermore the 
term 'proof' assumes that there is an objective truth or an objective rationality, independent of any 
subjective consciousness assessing the rational process. The term 'llEtKVU!!t' seems closer to Lakatos' 
interpretation 19

. 

In fact Husserl's initial analysis (when we ignore his ad hoc creation of 'reactivatability'), is a valid 
approach to a phenomenology of mathematics which complements Lakatos' suggested methodology. It is 
because it is not possible to carry out a simultaneous reactivation of all the steps involved in a 
mathematical argument, that all proofs are temporary and non-absolute. They are necessarily partial, since 
the limits of the definitions of concepts cannot become clear until they are seen to be contained in deeper, 
more general concepts20

• Because it is impossible to apprehend a proof in its totality back to the basic 
premises, attempts to reactivate certain elements of a proof, in their context or in another wider context, 
can reveal new ideas that were obscured by implicit assumptions in the original proof. 

By following the development of a geometrical problem into topological concepts, Lakatos showed that 
the process he recommended as a methodology was that which actually took place over the course of 
his(ory, but unconsciously (and in fits and starts) since, in keeping with the prevalent attitude to proof, 
counterexamples were regarded as 'monsters', causing mathematical reactions which he characterised as 
'monster-barring', 'monster-adjusting' etc., rather than stimulating careful re-examination of the steps of 
the proof to discover precisely which steps or concepts were called into question in each case. 

18 
Husser! (1929). 

19 Any information on when, where, how and why the term 'demonstration' was replaced by 'proof' will be gratefully received. 
20 

See Lakatos (1963/4) and Polya (I9S4). Lakatos demonstrates this process of increasing inclusion. See also Whiteside 
(1960/2). Einstein's gravitational theory contains Newton's. Godel proved this common sense idea in mathematics. It is 
interesting and unfortunate that although the more inclusive concepts and theories do not contradict earlier more partial ones, yet 
they are usually seen at first as threatening. 
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Lakatos' suggestion was that this process of improving conjectures should be adopted consciously as a 
methodology of mathematical development. In effect, he argues that mathematics already has a 
methodology latent within present forms; it is only the rigid, static interpretation of these forms which has 
prevented perception of the essential, complementary dynamic that they contain. It requires only a fluid 
rather than a static attitude to proof in order to appropriate and activate this methodology (to work with it 
rather than against it). 

Lakatos' critique focusses on attitudes to the concept of proof, which determine reactions to the 
occurrence of counterexamples, thus affecting the development of any given problematic in 
mathematics.This paper, like Lakatos, is concerned with underlying attitudes which have influenced the 
development of different modes of mathematics. 

The way in which most mathematical historians regard as deviants earlier mathematical projects which do 
not translate or conform to the current, conventional mathematical ideas, is similar to the view of counter 
examples as monsters; the insidious extrapolation of the mathematical-logical view of contradiction from 
static to temporal phenomena manifests itself in the inability to come to terms with real change. 

Szabo suggests that the reductio ad absurdum form of proof which replaced earlier more illustrative forms, 
was adopted from Parmenidean logic21

• Whether or not this was the case (his argumentation is convincing) 
the two forms are effectively the same. This shift in the mode of proof resulted in a move away from the 
intuitive reasoning which led to the conjecture initially22

• This particularly affected the proofs of number 
theoretical theorems23 

, which is surely a factor in the impoverishment and degeneration of arithmetike, 
which accompanied the subsequent growth of geometry. We shall see that this was also the beginning of 
the notion of mathematics as being more essentially concerned with quantity than qualities. 

Obviously these questions require a much fuller investigation. Nevertheless we can begin to see that at the 
very inception of the mathematico-logical method, which was to prove so powerful in the development of 
mathematics, it brought about changes which profoundly affected the telos of mathematics. The 
implications of some of these changes were only articulated much later. It was still later before some of 
the inherent limitations began to be realised and the question as to the limits of validity (and usefulness) 
of the method recurs24

• 

Husser! and Lakatos are important, because they open up debates in little touched areas of mathematical 
philosophy: Husserl's discussion relates not only to epistemology but also to ontological issues in 
mathematics. Lakatos is concerned with the methodology of mathematical development. The latter's study, 
using historical research to offer a constructive critique of current mathematics and mathematical 
philosophy, also serves as a relevant example of the results possible through combining historical 
investigation and philosophical analysis. I think it can be shown that Husser! and Lakatos, via different 
paths, in fact enter one space, a philosophical area peculiar to mathematics with its unique relation to the 
life-world. 

21 
Szabo (1969). 

22 
See SzabO (1969). See also Whiteside (1960/2) for a discussion and illustrations of this shift as it affected mathematical proofs 

from the 17th century into the 18th_ The question of the meaning of proof and the validity of proof now recurs with extra bite 
given the computer proof of the 4-colour theorem and the collaboration proof of the classification theorem for fmite groups. 

23
Szab6 (1969). 

24 
For example the technical consequences of some ofKronecker's arguments (e.g. on Aristotelian logic and on the centrality to 

mathematics of the natural numbers) were only realised fully in the work of Brouwer and the intuitionists. 
It is ironic that Aristotle (c.350 B.C.) was clear about the limits of validity of his logic; it is those who have used it subsequently 
who have implicitly assumed it to have global validity. 
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Now, let us return to the mathematical focus of this inquiry: the concept of number. 

3. NUMBER THEORY: NOTES TOWARDS A SELECTIVE HISTORY 

This section will deal with topics which concern the integers; but not directly with the integers themselves. 
As necessary background, therefore, here is a short eulogy to natural number. 

Who cannot be intrigued by the dual nature of the integers? In the first place they are our archetype of a 
discrete well-ordering. (It is this aspect which is taken as their defining characteristic in attempts to 
'found' the integers on various set theories, i.e. to construct set theoretic models that functionally 
approximate to the natural numbers.) They appear as a monotonous repetition of a single relationship ad 
infinitum: I <2<3<4 ...... very useful for counting sheep, but scarcely exciting. 

And yet as we look closer, as our range of numerical operations expands, we perceive more and more 
complex structures generated by this seemingly banal series: more varied relationships between the 
numbers, in terms of which we begin to appreciate the integers as individuals with different 
characteristics. As the range of structures that we are able to identify increases in diversity and complexity, 
where we once saw undifferentiated extension, we now see a finer, more subtle web of interlaced and 
distinct entities. We then see this web to have been latent in our primary, deceptively simple sequence. 
When an ever finer grain emerges at every increase in our power of definition, the subtlety of the number 
series seeming always one step ahead of our subtlety, how can we avoid the induction of the image of the 
natural numbers as the eternal source and limit of our pattern-making25? With the primes, perhaps, as 
perpetual jokers, continually escaping the webs we weave. 

Well, yes, it seems natural to be in love with the natural numbers; and, as will emerge in this essay, the 
real number line and the complex plane can be seen as natural extensions of the integers: extensions 
whose developments and properties seem at times, like the paths in Alice's looking-glass garden, to lead 
away from their source, but always finally return to it. 

When we look at contemporary mathematical work on the integers, although various mathematicians have 
commented on the integers in this vein, very little actual mathematical work corresponds to this attitude26

. 

There are two main areas of contemporary mathematical work on the integers: foundational studies and 
number theory. 

In the former, the approach adopted to the integers is that it is necessary to found them in some form of 
set theory27

• This results in a model of the integers as a class, taking their most obvious attribute, the 
discrete well-ordering, as the defining characteristic, and (since the stress is on the homogeneous aspect 
of their nature) reveals nothing about the complex interrelations of the integers (i.e. about the integers as 
ind"ividuals ), but then that is not its aim. 

Thus foundational work has a more clearly articulated aim than contemporary number theory: to ensure 

25 Th· . h th . I Is ts w at e L0wenhem1-Sko em theorem says_ 
26 

Or even work in the philosophy of mathematics: one exception is Becker ( 1927). [N.B. 2013 note: the mathematical landscape 
has begtm to change with the growing importance of cryptography and the discovery of the deep importance of the mysterious 
Riemann hypothesis.] 
27 

This attitude which has been shared in one form or another by all the great figures in modem philosophy of mathematics from 
Frege (for whom Werl/iiufe take the place of sets) onwards, has been criticised by Wang who has pointed out that no substantial 
reasons have been given for supposing that 'numbers evaporate while sets are rocks' (Wang, 1974 p.238). 
See also the more general criticisms of 'foundational ism' in Smith (1976) and the references given there. 
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secure foundations for the mathematical edifice. It is perhaps partly for this reason that it has enjoyed a 
higher status; even though the strong form of this aim that the system should be consistent and complete, 
was shattered years ago by Godel's theorems. Certainly foundational, mathematico-logical concerns 
continue to dominate mathematical philosophy. But we shall see that the driving force behind this 
emphasis is an attitude which has haunted mathematics and its meta-disciplines, mathematical history and 
philosophy since Parmenidean bivalent logic was incorporated into mathematics as a guarantor of 
certainty, Wittgenstein drew attention to it in 'Remarks on the Foundations of Mathematics', where he 
writes 

'My aim is to alter the attitude to contradiction and to consistency proofs. Not to shew that this proof 
shews something unimportant. How could that be S0?'28 

This attitude, which could be called 'contradiction-phobia', is a fundamental block that we are in a far 
better position to overcome now than in the Greek era. 

Needless to say, the dominant concern of this paper is closer to the other main approach to the integers, 
via number theory, which takes the integers as given and concerns itself with the integers as individuals, 
their characteristics and interrelations. For this reason we shall examine how and why, since the time of 
the Pythagoreans, number theory gradually declined in status and lost sight of its original telos, thus 
losing touch with its living content and losing wholeness and coherence. We shall also examine whether 
there might be a way in which the essential number theoretical concerns of the Pythagoreans could be 
meaningful today. 

For the Pythagoreans, number theory or arithmetike, was the basis of their metaphysical science29
• Their 

monadology was an attempt to discover the relationships of the universe, which they originally believed 
could be described totally in terms of integers and ratios of integers. In their mathematical work they both 
extended the range of possible operations with numbers (theory of ratios, magnitudes in geometry etc.) 
and simultaneously objectified the properties of the individual numbers which emerged30

. That is to say, 
they were concerned both to develop more complex structures which could accurately describe the 
complicated phenomena in the world, and to take note of the role which the integers played in these 
developments. 

By naming the qualities of the integers (i.e. properties which are the complementary result of an 
operational pattern, e.g. triangular, square etc.), it may prove possible to perceive relationships between 
these properties themselves (i.e. another mathematical structure) as, of course, has proved to be the case 
with the properties which the Pythagoreans abstracted. These relationships between the Pythagorean­
derived properties are still the foundation of number theory today. It is possible gradually to build up a 
more complete picture of each individual integer in terms of its properties; in this case, in whatever 
context one is dealing with a particular integer, one's awareness of its various attributes may yield 
simultaneously a new understanding about the nature of the context (thus revealing new possibilities) and 
about the nature of the integer, for example another attribute, or a meta-relation of properties. 

We do not know if the Pythagoreans consciously adopted this twofold approach. In fact, whereas the 
current mathematical approach emphasises operational structures, the Pythagorean emphasis seems 
originally to have been to discover qualities of the integers and structural developments served as tools to 
this end. But the resultant of their work was a balance between these two aspects of development (the 

"Wittgenstein (1956) 
29 

The distinction made by Klein (1968) between number theory and arithmetike has some validity and leads to certain 
interesting questions but they are not immediately relevant to the present discussion. 
3° For example, as Aristotle (1942, A.l4.1 020a35- b8) tells us, 'linear', 'plane' etc 
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dependence of the hypostatisation on operational developments is not matched by the inverse necessity) 
until the discovery of the existence of irrationals. 

There is a tendency to depreciate the Pythagoreans' concern with the qualities or forms ('eide', £1011) of 
the integers as number mysticism, which is questionable. There are two interwoven strands in their 
approach: the attempt to associate different numbers and ratios with human characteristics, moral 
attributes etc.; the other we could retrospectively (anachronistically) call defining equivalence classes of 
integers (largely from the forms which arose out of the figurate representations). The former does not 
invalidate the latter, as the attempts of the Merton scholastics to quantify such entities as love etc. do not 
invalidate their work on dynamics. 

The question of the possible importance of a mystical or metaphysical perspective in furthering the more 
limited mathematical praxis will not concern us now. This question arose with regards to the relation 
between Newton's alchemical researches and his accepted mathematical work31

. What is clear is that the 
usual connotation of'mystical', namely 'opposed to reason', does not apply to the Pythagoreans. Their 
transcendent telos is rooted in a materialist perspective: they are described by Aristotle, together with the 
physiologists, as being of the opinion that being extends no further than sense perceptionn Aristotle also 
stresses that it is Plato who first makes number separable from objects of sense, whereas for the 
Pythagoreans "the monads have magnitude"33

• 

The discovery that there were magnitudes that could not be expressed as integers or ratios of integers 
meant that the Pythagorean monadology was no longer tenable as a global philosophy. The original 
concept of number was maintained. The term 'number' ('arithmos', aptB!lo~) was used only for the 
integers greater than one. 'One' (the 'monas', !!OVa~) was the unit and unity, and was considered the 
principle or beginning of number and as such had a different status from the numbers which it generated. 
'Two' was sometimes similarly excluded from the realm of number; the reason for this stems from the 
Pythagorean identification of 'one' and the odd numbers with 'limited', opposing 'two' (or the 'dyad') and 
the even numbers as 'unlimited'34

; but this perception of two was not observed so strictly. Fractions were 
not considered to be numbers, since the 'one', the source of numbers, was essentially indivisible; only 
ratios of integers were allowed in arithmetike. 

Since the irrationals are not generated by the 'one', nor do they reduce to ratios of integers, they had no 
place in this system (they did not even have a justified operational framework until Eudoxus adapted the 
theory of proportion to this purpose), and they were incorporated into mathematics as geometrical 
magnitudes (not numbers). There was now a rigid ontological distinction between the objects of study of 
arithmetike and geometry: 'number', arithmos, is discrete, a multitude of indivisible units; 'magnitude' 
('megethos', pcyt:Bor;) is continuous, an infinitely divisible spatial measure3s 

Frdm this time on, the development of geometry began to outstrip that of arithmetike. Before this, the 
figurate representation of numbers and the theory of ratios, meant that geometry and arithmetike were 

31 
See Dobbs (1975) who shows that Newton's alchemical work preceded and was concurrent with his scientific research. It was 

previously assumed that he became an alchemist only later in his life when he had completed his scientifically acceptable work. 
This assumption made it possible to dismiss the alchemical work as simply the product of his dotage. 
32 

Aristotle, (1942, AS, 990a 31) 
33 

Aristotl2, (1941, M6, 1080b 191) 
34 

The importance of unity, oneness, wholeness, is beginning to be recognised again with the growth of holistic approaches to 
knowledge. In biology clearly the whole is greater than the sum of its parts. The argument here is that we need to begin to 
investigate 2-ness, 3-ness etc in similar ways to those indicated by M.-L, von Franz (1974), using the wealth of modem 
mathematical knowledge, mainly logistike, to uncover the corresponding arithmetike. 
35 

These issues are discussed in detail by Becker (1927), pp.l29-148 and pp.l99-213. 
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closer and shared developments; now their objects of study were separate. It might be argued that, in any 
case, number theory had already exhausted the possibilities for deriving terminology from geometric 
forms. This is a separate question; here, what is relevant is that number was excluded from the study of 
geometry. In the Renaissance when the distinction was bypassed (with no theoretical underpinning), the 
content of number theory was already determined and the living relationship between the study of the 
integers and other mathematical areas was not renewed. 

From this time also, there was a shift from illustrative demonstration to more strictly logical proofs -
relying more on reductio ad absurdum. Szab6 shows that for number theoretical theorems, such indirect 
proofs were sometimes substituted unnecessarily (in terms ofrigour) and perversely (in terms of intuitive 
value i 6

• By the time of Euclid's compilation, the appended diagrams served no useful purpose, 
representing discrete numbers by line segments. 

Also in this period the study of number itself was split into two disciplines: arithmetike and logistike. The 
dividing line was never unequivocally established, but one fairly common factor in the various versions 
given is that arithmetike deals with the 'eide', forms, kinds, species, of number; whereas logistike deals 
with the 'hyle'(DUATt) of numbers, the quantity, the material, the amount that they represene7

• The verbal 
roots of their mathematical meanings are respectively, 'arithmein', to count, and 'logizmein', to calculate. 

Disregarding for the time being the original underlying reasons for this distinction, it is clear that it was 
uncritically accepted by the neoplatonists as a rigid separation (Plato's suggested refinement of a further 
classification into theoretical and practical areas of each was not followed). The attempts at clarifying the 
distinction consisted in trying out different formulations for it and adjusting the classifications of the 
existing mathematical subject classification accordingly, rather than questioning its basic premises. So the 
study of the natures of numbers and that of numerical operations were seen as separate rather than as 
complementary and mutually stimulating. 

It is relevant that Diophantine analysis, which was vitally important for the growth of modem algebra and 
which, according to the Platonist distinctions, should have appeared as logistike, or theoretical logistic 
(when Vieta takes it up, he adopts the latter term) in fact appeared in his Arithmetica, i.e. Diophantus 
disregarded this distinction. He also moved away from the mainstream in that he did not use the 
Euclidean proof form and he accepted fractions as numbers. 

So we have now extricated three important factors contributing to the decline in status and/or content of 
number theory in the Greek era: 

i) the rigid ontological distinction between number and magnitude, 

ii) the emphasis on logical proof (particularly bivalent logic )as opposed to illustrative demonstration, 

iii) the hypostatisation of the arithmetike/logistike distinction. 

Obviously these points require further examination, but now we continue our whistle-stop history of 
number theory. In the Middle Ages interest in the integers was primarily in terms of numbers as religious 
or moral symbols; this is certainly of interest in some respects but it is not directly relevant to our inquiry 
at present. From the Renaissance until the 19th century number theory basically consisted of a range of 
seemingly rather disparate (albeit stimulating and important) problems, such as the question of the 
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szab6 (1958), pp.118-120. 
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distribution of primes, Fermat's last theorem etc., that appeared to have arisen almost accidentally in the 
course of its history. It had become an area of ll)athematics that lacked an inner sense of direction and 
wholeness, having been content to assume problems which involved terms which figured in the Greek 
number theory. Its only claim to wholeness was the tenuous continuity with the Greek discipline, which it 
maintained by preserving the superficial content of their concern. One might say that number theory had 
petrified. 

In the 19th century it gained coherence when Gauss (who considered number theory to be the queen of 
mathematics) published his Disquisitiones Arilhmeticae which extended the notion of integers to include 
complex integers, laying the ground for algebraic number theory. Analysis began to be used in number 
theoretical proofs, giving rise to analytic number theory. But the emphasis continues to be on other 
branches of mathematics acting as investigatory or proof machinery with respect to number theoretical 
problems whose roots go back to Pythagorean arithmetike. Although analytic and algebraic insights have 
extended and deepened the structural vocabulary of number theory, it has not appropriated the expanded 
field of operations involving number (the extensions oflogistike) as a potential source for developing its 
basic descriptive terminology for the integers themselves. 

The phenomenon of the occurrence of particular integers in diverse mathematical fields is not examined 
for the significance they may have in terms of a nature or characteristic of the integer involved; even 
though, particularly in algebraic geometry and topology, such phenomena are increasing and it is 
sometimes necessary to use classical number theory in such proofs, still the converse approach is not 
adopted. Obviously this is now a formidable task, but results seem to be converging in this direction. 

Although it would be worthwhile to consider some perspectives on arithmetike as the matrix for logistike, 
for now we shall make a preliminary investigation of some of the questions raised by the history of the 
extension of the number concept. 

4. CHANGES IN THE CONCEPT OF NUMBER 

We shall firstly look at the way in which the concept of number was extended in the European rebirth of 
mathematics, at some of the underlying attitudes and their implications. We have already briefly 
considered the Greek conceptualisation: their ontological distinction number : magnitude corresponded to 
the antinomy discrete: continuous. Before beginning to investigate some of the philosophical questions 
raised in connection with the changes in the concept of number, we will first go through a very summary 
history of the developments after the Greek era. 

The Romans were primarily interested in practical results rather than theoretical mathematics and the 
continuing usage of their number system in the 'dark' ages (making multiplication and division extremely 
lengthy tasks) meant that there was little theoretical mathematical work in this period. Its rebirth was an 
important element in the phenomenon of the Renaissance. Theory was stimulated by the introduction of 
Arabic and Greek texts (the latter via Arabic translations). The gradual adoption of the Hindu-Arabic 
number system which contained a sign for zero and was a consistent place system, facilitated numerical 
operations. This notational development was key to the explosion of mathematical, scientific and 
economic developments that followed. 

It was in the sphere of commerce that this number system was first introduced: the main concern was 
correct, convenient operation with numbers, not a theoretical foundation. Since fractions arose in simple 
numerical calculations, they were popularly considered numbers, i.e. the Greek discrete: continuous, 
number :magnitude distinction was bypassed .• 

The study of the Arabic texts gave rise to much interest in algebra, primarily in solving polynomial 
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equations: the tenns 'surd', 'absurd' or 'cossike' numbers were used variously for rationals, irrationals and 
what we would now call the variable tenns of an equation. There was an implicit assumption that 
polynomial equations were detenninate, that there was a definite numerical solution waiting to be 
discovered (or, as we would describe it, that the existing number field was closed under the operations 
used). 

The use of the tenn 'number' for these cases was disputed, in the first place by the neoplatonists. The 
emergence of negative and imaginary solutions caused further confusion. There was in fact more 
difficulty in accepting negatives than irrationals38 since the negatives lacked the framework which the 
Eudoxan theory of proportions supplied for the irrationals. From the general questioning as to the criteria 
for acceptance of candidates for numberhood, the dominant perspective which emerged was a pragmatic 
one: operations with the new number-like entities continued because they were useful. Slevin's position 
was one of the most coherent; amongst others he championed the decimal notation for fractions and 
consequently advocated the radical notion that 'Number is not all discontinuous quantity,;9

• 

' This was the vague beginning of the idea of a number line, a different kind of parallel between geometry 
and arithmetic from that of the Greeks. The existence of a symbol for zero was of vital importance in this. 
Stevin and later Wallis argued its equivalence to the geometric point, as opposed to the Greek equivalence 
of the 'monas' to the point. They were also both concerned to be explicit about the corresponding new 
status of 'one', that it should be considered a number, since, according to Wallis, it answers the question, 
'How many?'. 

In the 17th century the question of the conceptualisation of number was generally secondary to 
problematics of the operational developments. As a result of the more pragmatic attitude (revealing the 
beginnings of a fonnalist attitude to mathematics) negatives and imaginaries were used like other 
numbers in calculations because they ultimately rendered correct results, even though when they emerged 
themselves as solutions, these were regarded as meaningless40

. 

These operations and the corresponding attitude were not validated until the 19th century, when Hamilton 
elaborated the consistent algebra of complex numbers, and negatives and imaginaries were accorded a 
more 'intuitive', visual meaning in the Gauss-Wessel representation of the complex plane. 

In the 18th century there had already been attempts to prove the fundamental theorem of algebra which 
implies that no new candidate for numberhood could emerge from polynomial equations. Leibniz in 1682 
had coined the tenn 'transcendental' for numbers that 'transcend the power of algebraic methods'. It was 
in the 19th century that first Liouville (in 1844) demonstrated that a certain serial fonn would yield 
transcendental numbers, and later Hennite (in 1873) showed the transcendence of e, and Lindemann (in 
1882) that of pi. 

Both irrationals and transcendentals slip through the dense mesh of decimal fractional notation for the 
number line and at the end of the 19th century, Cantor developed a theory of transfinite numbers (cardinal 
numbers of infinities) which included a proof that the order of infinity of the continuum was higher than 
that of the whole numbers (and rationals). The development of the theory of these new numbers opened 
up controversies that harked back to the Eleatic paradoxes. Also, interestingly, a new monadic structure 
emerges in that the transfinite numbers are discrete: no-one has yet managed to construct a set whose 
cardinal number lies between that of the natural numbers and that of the real numbers, and higher 
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transfinite numbers are generated by considering the set of subsets of a transfinite see 1• 

Now to return to some of the philosophical questions raised. First, before considering any of the more 
particular questions, when examining Greek mathematics we cannot ignore the context of the original 
mathematical concern, which takes us into contradictions whose interplay has been a vital element in the 
growth of the mathematical organism. 

For the Pythagorean-Platonic perspective (from which, rather than from the other Greek schools of 
thought, our mathematics mostly derives) mathematics was intended primarily as a metaphysical 
discipline; the aim was to understand material reality as a manifestation of divine truth, not to control 
nature. The guiding principle was the order ('taxis', <ui;tc;) of the whole; the foundation of their 
metaphysics was a belief in the eternal unity, the 'one', and they sought, through an understanding of 
cha,ngeless mathematical relations, to reach the highest truths pertaining to the eternal reality which 
transcends material reality42

. 

For the Pythagoreans, the transcendental, absolute truth was immanent in material, phenomenal reality; 
for Plato it lay behind or above worldly reality; there was a separation, an abstraction. For Pythagoras 
mathematics contained the truth; for Plato (although there is some ambiguity about his position) it seems 
that mathematics was a step towards an appreciation of the truth. For both, perception of the truth 
necessitated a self-transformation: it is not nature that hides, it is our vision that is skew43

• 

Since the time of the Greeks, mathematics has been identified with truth, but the nature of the truth sought · 
has changed radically from being a revelation of transcendent reality, to an undeniable, empirical 
statement or fact44

, or even a system of tautologies. Paradoxically, the one constant element in the idea of 
truth has been the quality of being absolute, timeless, unchanging! The underlying issues here touch the 
shared boundary, the no-man's-land between epistemology and ontology. 

The Pythagorean-Platonic orientation was primarily ontological. The Platonic dialectic was a process to 
allow an ascent to a vision of the form of the good, a transcendent, subjective, absolute certainty, which 
was essentially incommunicable to others who did not take part in the ascent. Proclus' neoplatonist 
exposition of an 'ascent from more partial to more universal understandings' by which 'we climb up to the 
very science of 'being' in so far as it is 'being''45 was extremely influential in the Renaissance; but the 
telos behind this ideal of a science transcending other sciences was profoundly different from the original 
Platonic goal. Plato's vision of a unified metaphysical science was split. The subjective, metaphysical 

"Paul Cohen's exciting proof of the independence of the continuum hypothesis and axiom of choice from the axioms of ZF set 
theory, does not change this. 
42 

See Becker (1927), Comford (1939) and Klein (1968). The shift in attitude is clear if we look at the original meaning of 
'theory'; as Russell says (1971, p.52), "this was originally an Orphic word which Comford (in 'From Religion to Philosophy') 
interprets as 'passionate, sympathetic contemplation"'. In this state, he says, "the spectator is identified with the suffering God, 
dies in his dea~ and rises again in his new birth". For Pythagoras, the 'passionate, sympathetic contemplation' was intellectuaJ 
and issued forth mathematical knowledge. 
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been learned'. Given the religious nature of the Pythagorean school, it is certainly arguable that the fundamental learning 
concerned the spiritual development of the disciples and what we now consider to be the mathematics deriving from that school, 
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It is interesting that the original etymological meaning of 'mathematics' is so open. This may account for one problem which has 
dogged mathematical philosophy for some centuries (although it has not always been acknowledged), namely that mathematics 
has been defined by extension not by intension (to return to a neglected but useful Aristotelian distinction). 
44 

See Lewis Mumford (1970). It is interesting that the etymological roots of'fact' and 'fiction' are so siroilar: 'fact' derives from 
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orientation was preserved in the opera of the alchemists; but these, for various reasons, including the 
danger of persecution, largely remained privatised and that mode ultimately disappeared. Recently such 
works are being re-evaluated in terms of their effects on the new, emergent science, the rival mode which 
triumphed. 

It is, of course, the Cartesian philosophy which most clearly indicates the reversals of the classical Greek 
approach, as well as the continuities. Plato's dialectic works through accepted statements to attain a higher 
level of absolute, subjective certainty; with Descartes' epistemological orientation, he reverses this order 
to found his rationalism on subjective certainty of a low level, then, taking mathematical reasoning, the 
'geometric' method as his model, he believes it possible to proceed via clear-cut self-evidences, to 
accumulate a higher level of knowledge that is explicit, articulatable and still absolutely certain46

• 

In his Discourse on the Method of Right Reasoning, Descartes says, "those long chains of reasoning, sim­
ple and easy as they are, of which geometricians make use in order to arrive at the most difficult demon­
strations, had caused me to imagine that all those things which fall under the cognisance of man might· 
very likely be mutually related in the same fashion and provided only that we abstain from receiving any­
thing as true which is not so, and always retain the order which is necessary in order to deduce the one 
conclusion from the other, there can be nothing so remote that we cannot reach to it, nor so recondite that 
we cannot discover it.'"'7 

Remarkably no one appears to have commented on the fact that Descartes, in his enthusiasm for the 
'geometric' method which is deductive (i.e. a method to prove a theorem once it exists); mistakes it for an 
inductive method (i.e. a means for discovering or generating new results).In fact he intended his method 
to be used only after his course of meditations had been followed. This part of his teaching appears to 
have been totally ignored both by his disciples in his lifetime and subsequently. 

As Husserl48 points out, there is also a fundamental inconsistency between Descartes' radical starting­
point, the epoche, and the rationalist system that he develops (the former destined ultimately to undermine 
the latter): his bracketing is incomplete; belief in the Galilean, mathematical book of nature is not 
submitted. Before following any further the theme of the nature of mathematical truth and certainty, 
attempting to umavel the cross-threadings of the empirical and transcendental, objective: subjective, 
relative: absolute etc., let us return to consider the development of the number concept and its relation to 
the more general conceptualisation of mathematics as a whole. 

For the Pythagorean and Platonic perspectives, the question of the ontological status of number and 
mathematical concepts is of prime importance. In the original Pythagorean conceptualisation this status is 
clear: all is number, where number is discrete, heterogeneous, substance and form, quality and quantity. 
The existence of the irrationals, which made this early vision of a complete, mathematical universe 
untenable, was encompassed in Plato's hierarchy oflevels of reality. The irrationals can be seen as 
magnitudes and part of the illusory, changeable, material world; the integers belong to the real, 
metaphysical, changeless realm of ideals, where the form of the good presides. The discrete: continuous, 
number : magnitude contradiction was contained, if not clarified, in an ontological distinction. 
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The beginnings of the modem conception of number can be seen in Aristotle's argument against the 
Platonic idealist conception, where he maintains that the unit is merely the measure of number. He also 
questions the equivalence of the point and the monas, but not the number :magnitude distinction. In this 
move away from a metaphysical, ontological foundation we see the beginning of the problematic of the 
status of number which became manifest in the Renaissance, eventually leading to a re-opening of the 
question as to the status of mathematical concepts generally. 

When the question of the conceptualisation of number recurs in the Renaissance, we are at an extremely 
interesting historical juncture, since the problematic at this time could be seen as being both caused and 
resolved by pragmatism. As stated, fractions, as well as 'one' and zero had come to be regarded as 
nUJpbers in everyday commercial usage, but this state of affairs was not so different from the everyday 
context of the Greek mathematical philosophers. The difference was that the Renaissance philosophies 
offered no perspective on questions of the conceptualisation of number, which only became problematic 
in connection with the algebraic developments. 

In accordance with Diophantus' usage of the term 'arithmos' to represent the unknown in his 
investigations (where he also accepted fractional parts of the monas), it was assumed that the polynomial 
equations would yield numerical solutions. The strangeness of the emergent solutions, some of which 
were irreducible either to elements ofthe accepted number domain or to irrationals which corresponded to 
the Greek criterion of constructibility, caused a questioning of the earlier unselfconscious pragmatism and 
a concern to proscribe the limits of number. It is significant that the right of fractions to number hood was 
not questioned. 

In retrospect, we might say that the acceptance of fractions as numbers necessitated the eventual 
acceptance of the other candidates for numberhood: but that is to assUJne the concept of a number field, a 
number system which is closed under certain operations. This criterion, which is linked with a formalist 
understanding of mathematics, emerged very slowly. It was not until the 19th century that it came to be 
articulated more explicitly and receive more general acceptance, although it began to manifest in the 
consciously pragmatic attitudes adopted in the face of the new offspring of number. Until that time widely 
divergent views continued to be voiced as to the status of the negatives, imaginaries and irrationals; such 
views decreased in importance as the operational importance of the unplaced entities increased. 

In the Renaissance climate of economic expansion (as opposed to the relatively static Greek economy) 
with its need for improved arithmetical techniques, and the belief in an effective, technologically oriented 
science based on the use of quantitative mathematical models, number was generally seen as quantity. The 
Greek ontological prohibition of fractions was no longer relevant, indeed it was scarcely considered; 
fractions appeared 'natural' (the Greek view of them as ratios survived in the nomenclature 'rational' 
numbers); negatives were considered variously 'absurd', 'impossible', fictitious, and 'false', whilst the term 
'imaginary' was coined dismissively by Descartes, complex numbers having been described earlier as 
'useless' and 'sophistic'49 

All these terms are revealing as regards the implied grounds for accepting candidates for numberhood; on 
the one hand there is an assumption of a sane, possible, real, true area prescribed by the accepted, positive, 
rational numbers (whose ontology is, at that time, not questioned); then, the term 'useless' betrays an 
incipient teleology in mathematics, it signals the beginnings of a more conscious pragmatism. 

In the first place it is a contradictory pragmatism: Cardan denigrates imaginary numbers as 'useless' and 
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continues to use them ('putting aside the mental tortures involved50
; theoretical attitudes oppose 

operational practice. The practice continues and in Girard's position we see the theoretical attitude 
reversed to form a coherent pragmatism: he asks himself: 

Of what use are these impossible solutions [i.e. complex roots]? I answer: For three things- for the 
certitude of the general rules, for their utility, and because there are not other solutions. 51 

He frames his question pragmatically and answers himself partially tautologically; his further justification 
reveals a rudimentary formalism. From the perspective of modern rigour, this claim of certainty, and the 
assumption that the extant solutions complete the system, is unwarranted. The claim of certainty 
accompanied the use of the new numerical offspring throughout the long period of operation with them 
while their status was not agreed, not determined. It is only with the rebirth of rigour that the notion of 
certainty begins to become more specific. In the formalist doctrine, it finally returns to revive its original 
Greek counterpart: non-contradiction again becomes the paradigm, but the locus of fundamental 
validation is reduced; for the Greeks it was a consistent, global ontology; in the modern age completeness 
is required not in a global philosophy, rather it is sought in the local mathematical microcosm 52~ the 
original formalist demand being that a mathematical system be consistent and complete. Girard's 
theoretical attitude articulated the practice of the time; most mathematicians continued to practise 
pragmatism in contradiction with their theoretical positions53

. 

The status of the irrationals was also re-evaluated. Some mathematicians (including Pascal and Barrow) 
wished to salvage the number: magnitude distinction although its original foundations were no longer 
valid ontologically or technically54

• But there was also an attempt to articulate a new criterion for the 
acceptability of candidates for numberhood, more in keeping with the quantizying spirit of the 
Renaissance, based on the extension of decimal notation to include fractions: Stifel first gives the 
pragmatic reasons that might be given for accepting irrationals as numbers: 

Since, in proving geometric jigw·es, when rational numbers fail us, irrational numbers take their place 
and prove exactly those things which rational numbers could not prove ... we are moved and compelled to 
assert that they truly are numbers, compelled that is, by the results which follow from their use - results 
which we perceive to be real, certain and constant. 

But then heargues that: 

Other considerations compel us to deny that irrational numbers are numbers at all. To wit, when we seek 
to subject them to numeration [i.e. decimal representation] ... we find that they flee away pe1petually. so 
that not one of them can be apprehended precisely in itself ... Now that cannot be called a true number 
which is of such a nature that it lacks precision ... Therefore,jus/ as an i'lfinite number is not a number, so 
an irrational number is not a true number, but lies in a kind of a cloud ofinfinii)P. 

His subsequent argument that 'true' numbers are either whole numbers or fractions is circular, in that the 
decimal fractional notation is specifically constructed so as to express fractions in terms of ordered 
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sequences of integers, and, in fact, contains a technical inconsistency in that he omits to point out the 
distinction between the ultimately predictable iterative procedure by which fractions whose denominators 
are prime to ten, when expressed in decimal notation, similarly recede to infinity, and the unpredictable 
course of the irrationals in such a representation. But in his attempt to abstract a criterion for acceptance 
of candidates to numberhood, that of precise locatability in terms of the extended decimal notation, he 
reveals an awareness of the problematic of the limit concept which is ignored in Stevin's later conception. 

Ultimately Stifel's locatability criterion, like Descartes' argument for the limited acceptance of negative 
numbers (that equations with 'false', i.e. negative, roots can be transformed so as to yield positive roots), 
does not come to terms with the issue of the conceptualisation of number, but rather refers back to a 
presupposed, accepted number domain. In fact, Descartes does deal more directly with some important 
aspects of the number concept, but before discussing these we must first review Slevin's position. 

Stevin's conception of his mathematical task was as part of a general project to recover the knowledge of 
a 'wise age' that he believed to have existed before the Greeks (whose culture he sees as the beginning of 
a 'barbarous age'). This compelled him to explicate thoroughly his radical conceptualisation of number, 
with reference to the surviving formulations of the Greeks. 

Stevin was not the first to use the decimal fractional notation (Vieta and Bombelli amongst others used 
versions of such a notation) but his Disme, which functioned as a teaching manual for calculating with 
decimals and as propaganda advocating decimal standardisations of measures, was extremely influential 56 

in spreading the use of the notation which clearly played a key role in determining his conception of 
number. 

His first definition of number (articulating the spirit of the time) is 'that by which the quantity of each 
thing is expressed'57

• He then posits an analogy between number and continuous, homogeneous matter, 
stating his fundamental premise that the part is 'of the same material' ('de mesmematiere') as the whole58

. 

Then, using the classical definition of number as a multitude of units, he argues that the unit, being a part 
of a multitude of units, is of the same material as the multitude of units, but the material of the multitude 
of units is 'number', so the material of the unit, and thus the unit itself, is 'number'- not the principle or 
beginning of number (as it is in the classical Greek view). He remarks by way of illustration that to deny 
this last step would be like denying that a piece of bread is bread; the devaluation of the integers (which 
he later makes explicit) is already clear. This conception of number does not allow for the qualitative 
difference between a loaf of bread and a pile of crumbs! 

For Stevin, the unit is divisible (he invokes Diophantus); zero is now the beginning of number and the 
analogue of the geometric point. He states explicitly that 'number is by no means discontinuous'. Number 
m;d magnitude are now so similar as to be almost identical; he attacks the use of the terms 'absurd' or 
'irrational' for incommensurables: any root of a number is a number, since it is a part of a number. He 
makes a distinction between 'arithmetic' number and 'geometric' number, but this is actually a new 
distinction. 'Arithmetic' number is one expressed 'without an adjective of size' and 'geometric' numbers 
are 'quadratic', 'cubic' numbers etc. Any 'arithmetic' number may be a 'geometric' number, but when the 
numerical value is not known, 'geometric' numbers represent the indeterminate quantities in algebraic 
calculations, and are denoted by (I), (2), (3) etc. (where we would write powers ofx, x2, x' etc.). He 
thinks in termsof'unknowns' which are still geometrically cloaked. The idea of variables enters 
mathematics later. 
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Slevin, with his practical background, was primarily interested in determinate solutions to problems; 
Vi eta's agproach was different. Like Slevin, he saw his work as a recovery of lost knowledge not as 
creation 9

. He saw in the study of polynomial equations the possibility of a general mathematical method. 
In his 'arsanalytice'(the explicit telos of which was 'to leave no problem unsolved1 he extended the 
Diophantine algebra, extracting general methods from Diophantus' particular cases (in this he saw himself 
as revealing the methods which Diophantus used but concealed). In the symbolic notation which he began 
to develop for polynomial equations the unknown is clearly distinguished by letter. He retains the terms 
'side', 'square', 'cube', 'square-squared' verbally and refers to the quantities with which he deals, as 
'magnitudes'. He does not use a sign for equality in the 'arsanalytice '; he verbalises the progressive steps; 
it is not our modem equation form. 

We are now in a position to return to Descartes (in whom we again find the belief in an earlier, more 
complete knowledge60 ).Although the extent to which Descartes was influenced by Slevin and Vieta is not 
clear, his work could be seen, both on a mathematical, operational level, and on a more general 
philosophical level, as combining and extending theirs. 

As regards mathematics 'proper', it is Descartes who liberates algebra from its internal geometricisation 
(which had bec.ome increasingly a relic from the Greek formulation) on two levels. Firstly, on an 
elemental, notational level, he synthesised Vieta 's literal notation for the indeterminate term and Slevin's 
use of numbers to denote the power, thus creating the basis of our modem algebraic notation. Secondly, 
on an operational, conceptual level, he considered quantity as distinct from the geometric status (as Stevin 
had done for determinate number, but not in the case of the unknown): Descartes explicitly stated that a 
product of lines can be a Iine61~Then, having purged algebra of its geometric residue, he was able to 
establish a new relationship, at a higher structural level, between geometry and the algebra of 
dimensionless measure, a correspondence between equations and geometric curves; he formed a new 
synthesis, a new mode, coordinate geometry. 

Descartes himself saw this as an example of the practical effectiveness of his general method which was 
aimed at the 'mathesisuniversalis', a general science of order and measurement, that could be seen as a 
further stage in achieving the generality which Vieta envisaged in his 'arsanalytice'. Descartes founds his 
mathesis on a substantiation of Slevin's number-matter analogy; it is no longer seen as a metaphor; on the 
basis of his psycho-physiological model Descartes argues that there is an exact, real correspondence 
between number and matter; extension is both symbolic, as the object of general algebra, and real, as the 
substance of the corporeal world62

. 

Descartes thus supplies both a philosophical and technical foundation for the budding science. His 
philosophy articulates the rationalist method and identifies the basic subject matter of abstract 
mathematics with that of science, the investigation of the material world. Technically his structural 
quantification of Euclidean space prepared the ground for the differential calculus, a mathematical 
technique for dealing with mechanical, quantitative change. A space ordered by a continuous (potentially 
infinitely divisible) measure was a necessary prerequisite for this development, as was a homogeneous 
time, a vitally important factor in the growth of Renaissance science. The homogeneity imposed upon 
space was imposed upon time63

. Without the denial of the essential difference between these two basic 
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orders of the life-world, the mechanical mathematics of the differential calculus is unthinkable. This is the 
crux of the Eleatic paradoxes. The Greek mathematical solution was to homogenise space and ignore time, 
deny change. The mathematical mode engendered could entertain an integral calculus, the method of 
exhaustion for accumulative approximation to the space contained by a curve (line or surface), but not 
investigation of a point phenomenon. 

In the Renaissance, time enters as a conscious, explicit concern of science: the static, Greek 'episteme' 
(EmGtt]l.tl]) gives way to Renaissance, time-and effect-oriented science. In mathematics Vieta's antinomy 
determinate: indeterminate replaces the discrete: continuous polarity which dominated Greek mathematics. 
The Greek conception of number was architecturally spatial; number was composed of geometrical 
arrangements of monads, indivisible units. The elements of arithmetike embodied spatial forms. Time is 
introduced into the conceptual material of mathematics (and number) through polynomial equations (as 
distinct from its explicit, external entry as an object of study). Originally they were seen as determinate; 
their subject was the 'unknown' which was specified geometrically. The change in perspective by which 
the 'unknown' became the 'variable' simultaneously recognised time and stepped outside of it; the 
determinate solution became subordinate to the vision of the form of the possibilities of solution. 

This change in perspective is already inherent in the new notion of number as articulated by Stevin: 
number is homogeneous material, a conceptual object and the material which constitutes the object. The 
discrete:continuous contradistinction appears to be effaced. Stevin in fact argues the relativity of 
incommensurability on the grounds that a length that is incommensurable in one system, could be 
commensurable in another with a different standard unit; this fact, which is due to the relative nature of 
dimensional units, does not eradicate the contradiction inherent within number. 

Stevin's formulation articulates the intuitive notion of his time; his concept of number is closer to the 
Greek magnitude, continuous measure (viz. Vi eta's use of the term 'magnitude' for the subject of a 
polynomial equation); the absoluteness of the unit, the Greek foundation for discrete, heterogeneous 
number is undermined. The original integral decimal notation emphasised the homogeneous aspect of the 
integers, the repetitive procedure for approaching the potential infinity of succession. The extension of the 
notation in the other direction, i.e. to the infinitely small, gives an intuitive sense to the infinity of density, 
again emphasising the homogeneity. The decimal fractional notation, with its indefinitely close 
approximations to incommensurables encourages the illusion of a smooth elision from discrete to 
continuous, with the concomitant devaluation of the integers. 

Descartes' explication of the latent idea of number-line completes the image. Decimals are originally 
constructed from integers; once they are constructed, the integers appear to be made up of decimals as 
(evanescent) building blocks or (a more coherent view permitted by Descartes' model) to be arbitrary 
places on a number line. In fact, at each decimal place one meets only another level of units; the place of 
transition from discrete to continuous continually recedes; one never confronts the essential difference 
between exact numbers and incommensurables; it is merely postponed indefinitely. Smooth number 
glosses over the integer: magnitude distinction; the Greek hypostatisation which had contained the 
discrete: continuous duality by keeping the two poles rigidly apart, is now dissolved. Its continuing 
relevance to considerations of the integers is obscured. It appears temporarily to have been banished; but 
it is merely transferred, transformed into an internal contradiction of the expanded number concept, which 
makes it possible for the calculus to approach the limit point. Under probing the contradiction again 
explodes. 

With the suppression of the discrete, the polarity undergoes a modal shift: the place formerly occupied by 
the discrete, the number object, now houses determinate, finite number, any specific representative of 
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number the material, the continuous, which now represents the potentially infinite divisibility and/or 
range possible for any determinate number; it is simultaneously the material from which any determinate 
number is formed and the homogeneous number line (or space) from which a determinate number may be 
chosen. Slevin states that every 'arithmetic' (determinate) number is the beginning of'geometric' 
(indeterminate) number, just as zero is the beginning of'arithmetic' number64

• 

Whereas the Greek number :magnitude distinction was a static horizontal dualism fixed in space, the new 
concept of number implicitly contains the notion of a variable. The polarity operates between the levels, 
determinate and indeterminate; it is vertical rather than horizontal, dialectical rather than static. The new 
model fuses space and time in common homogeneity: determinate number is both formed of, and chosen 
from homogeneous, potential number; the Greek spatial composition of number persists in the 
identification of a determinate number with a line segment; but a determinate number is also a place, a 
point on a number line which may be singled out like a moment of time from which the probable past and 
the possible future stretch endlessly away. 

The implications of this mode of fusion are immense and warrant further discussion, but immediately we 
see the root of the problematic that concerned Miller and Meyerson65

; the new mathematics initiated in 
the Renaissance deals with time by reducing it to quantified space. The past and future are arbitrary in this 
schema (unlike the life-world), dependent on an arbitrary origin; the illusion is created of the possibility 
of stepping outside time, an illusion which, like the fiction of Euclidean space itself, is valid only within 
certain limits. A framework is created for the quantitative description (and thus possible prediction) of 
mechanical change, but the essence of experienced time, real change, the emergence of the qualitatively 
new, still eludes description. 

This problematic has recently been approached within mathematics by Rene Thom66
; his catastrophe 

theory can provide qualitative models for changes of state within a certain nexus, but he himself considers 
that the theory is essentially incapable of adaptation to quantification for predictive scientific purposes. 
The Renaissance vision of knowledge that is both certain and effective is reaching the limits of the mode 
it engendered. 

It would be worthwhile to return to examine more closely the roots of present mathematical problematics 
in the Renaissance incunabular of our mathematical mode, as well as the continuities and reversals from 
the original Greek seeds. There are, in fact, several interesting parallels between the Greek beginnings and 
the Renaissance rebirth. 

The Pythagorean mathematical inspiration was the vision of a numerical description of the world, where 
'number' was discrete, heterogeneous and in some way material. This thesis met with contradiction in the 
form of the irrationals; the idea of number as discrete was not sacrificed (that would have meant 
abdication of their metaphysics as a changeless reality}; but a new rigour was necessary to ensure non­
contradiction (equated with certainty). On the one hand it was necessary to supply a foundation for 
operation with irrationals; on the other, the general form of mathematical demonstration was tightened. In 
the Renaissance twist of the spiral, there is still a vision of a numerical world-description ('number' is now 
abstract and continuous, having subsumed the discrete: continuous antinomy) but with a new impetus 
deriving from the perception of mathematics as an epistemological method, a general art for solving 
problems. 

64
Klein (1968). I think that further investigation of this profound, conceptual shift could yield greater understanding not only of 

the ontology of numbers and mathematics but also of the underlying consciousness of ourmathematico- scientific culture. 
65 

See Miller (1948) and Meyerson (1930). 
66 See Thorn (1975) 
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The Pythagorean vision is of an isomorphism between the realm of discrete number and the life-world; 
the demonstrative method is secondary. Descartes reiterates this vision, with continuous number replacing 
the discrete, interposing a level of abstraction; he reverses priorities: his epistemological, rationalist 
method, modelled on the mathematical proof form, is primary. He also reverses the role of the form: in its 
original context the theorem precedes the proof, its direct function is static (it is only through a further act 
of reflection on the internal structural components of the proof, an involution, in accordance with 
Lakatos' proof analysis, that it receives a function in generating new understandings); when Descartes 
appropriates the form he interprets it as an epistemological method whose function is generative67

• (This 
part of his dream was never realised) In these reversals, the monadic structure retains its primacy.For the 
Pythagorean, the monadology is ontological; the unit elements are the prime constituents of the 
phenomenal world. For Descartes, it is epistemological: the constituents are the clear and distinct ideas 
which accumulate to form a body of sure knowledge. 

There is a further parallel, both with regard to content and history, between the (Pythagorean) Platonic 
metaphysics and the Cartesian rationalist science. Both deny real, qualitative change, the first by denying 
time, the second, by neutering it.. Both proved successful within limits; their very success caused the 
ideas to become embedded as ideology, so that even when the limits of their validity are approached and 
the original doctrines are questioned, their consequences still survive in mathematical praxis of which the 
roots have been forgotten, sedimented in history. 

The rebirth of Greek mathematics in Western culture is simultaneously a completion and an inversion. 
The development of the decimal notation fosters the new concept of homogeneous number, allowing time 
to be subsumed into mathematics. The initial consistent place system, of course, depends on the existence 
of a symbol for zero, and it would be worthwhile considering the further implications of this, for instance, 
the change of meaning that occurred in the cultural transfer of zero from its Hindu origins, where there is 
a sense of a full nothingness, to a society where 'nothing' is a mere absence, where 'nature abhors a 
vacuum' etc. What are the implications of our conception of zero and those of Hindu and Buddhist 
philosophy? Such questions obviously relate to considerations of the calculus. Interestingly Buddhist 
logic, beginning from the point-instant as the basic reality, i.e. almost the opposite metaphysics to the 
Platonist, came very close to notions of a differential calculus68 

The mode of the symbolic notation developed in the Renaissance could obviously be examined in more 
detail. For instance, before the Renaissance, the equation was not the paradigm of mathematics. The 
primacy of the equation (which has only very recently cometo be questioned) intemalises the mode of the 
axiomatic method: static consolidation ofatemporal positivities69

. The question ofoverdetermination of 
mathematical symbols needs to be investigated. 

When we look at mathematics as a language, we see that the concept of number which emerges in the 
Renaissance is adjectival with respect to ordinary language. The number language then bears a skew 
relation to ordinary language, since these adjectives are then accorded a substantive function in 
mathematical grammar. The situation is, of course, vastly more complex; mathematical grammar is not 
isomorphic to the grammar of ordinary language, but the attempt to understand mathematics in this way is 
valuable. The divergence between mathematical language and ordinary language only began with the 

67 
As stated this seems to have been more of a misunderstanding on Descartes' part than a deliberate step. 

68 See Stcherbatsky (1962) 
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See Adorno and Horkheimer (1944), p.7 IT, for a description of the mutual mirroring of mathematical and societal 
developments, for example, "Bourgeois society is ruled by equivalence. It makes the similar comparable by reducing it to abstract 
quantities. To the Enlightemnent, that which does not reduce to numbers, and ultimately to the one, becomes illusion; modem 
positivism writes it off as literature. Unity is the slogan from Parrnenides to Russell. The destruction of gods and qualities alike is 
insisted upon." 
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development of symbolic notation in the Renaissance; before that time mathematics was still 
predominantly verbal. 

In classical Greece mathematical language was embedded in ordinary language: to understand 
mathematical objects was to locate them in a global ontology; numbers attained reality as objects, and so 
could coherently be understood as substantives, by embodying geometric forms. In the Renaissance and 
Enlightenment mathematical operations are increasingly symbolised. Mathematical language is thus 
formally separated from verbal language. It has an internal coherence, being now composed 
homogeneously of symbolic elements. It is free to follow its own dynamic according to its own, internal, 
grammatical and syntactical laws. In the new reflexivity of mathematics the number concept is extended 
by internalising mathematical operations; an operational classification of number supersedes the Greek 
geometric classification. 

In the initial phases of growth of this mode as Klein says: 

the whole complex of ontological problems which surrounds the ancient concept of number loses its 
object in the context of the symbolic conception, since there is no immediate occasion for questioning the 
mode of being of the 'symbol' itself.10 

The extent of the rupture was not, at first, recognised; Descartes' identification of the mathematical 
object-world with the perceived material world and Kant's attempt to refound it metaphysically, was not 
called into question until the development of consistent non-Euclidean geometries, causing attempts to 
justify what had by that time become the status quo: conventionalism, logicism, formalism. These 
explicitly refuse to consider the problematic of the relation between mathematics and the life-world, 
attempting instead to create a Frankenstein's monster of mathematics, a self-sufficient entity whose 
judgment is more certain than that of its creators. The different ways in which the various attempts failed 
to achieve their original stated aims, merits further examination, but the very fact of the failures calls for a 
re-examination of the basis for such attempts. When Wittgenstein questions the motivation behind the 
foundations fervour, he asks: 

But what was the attempt made for? Was it not due to an uncertainty in another place? 71 

Is that 'other place' not the questionable place of mathematics itself in the life-world, entailing 
consideration of such problematic concepts as certainty which bridge the objective and subjective? The 
problematic posed for the Greeks by the symbolic status of number, as to its ontological reality, was 
temporarily submerged as the whole of mathematics assumed a symbolic character. Thus, the problematic 
now recurs on a larger scale, ofthe ontological status of mathematics. 

S.SUMMARY 

We have seen that at its inception in classical Greek times, mathematics was a holistic, practical philoso­
phy, concerned not only with technical, quantitative knowledge of the physical world but also with a 
qualitative understanding of the nature of knowledge and human life as a whole. Arithmetike, the study of 
the qualities of number (i.e. arithmoi, the natural numbers) was central to this. 
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KJein (1968). 
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The discovery of the existence of irrational numbers posed problems for this global mathematics, which 
were not met explicitly. Over the following cel}turies, the distinction between number (the discrete, posi­
tive integers) and magnitude (continuously divisible, physical size) was increasingly ignored with the 
technical expansion of mathematics. Mathematical pragmatism began to supplant the Greek mathematical 
ontology. 

The 13"' century introduction into Europe through commerce of the Hindu-Arabic decimal numeral sys­
tem, replacing the cumbersome Roman numerals, made possible the emergence of the revolutionary idea 
of a number line. Together with rapidly developing mathematical symbolism, this culminated, in the 17"' 
century, with Cartesian algebraic geometry and the differential calculus, which have dominated mathe­
matical activity to a large extent since. We saw that the changes here in the concepts of number and 
mathematics generally were intimately connected with changes in the concept of time. Equations were no 
longer assumed to be determinate: the notion of the variable was born, The number line as homogeneous, 
infinitely divisible measure, not only ordered space; it was also imposed upon time. This allowed the ex­
tremely powerful, quantitative description of mechanical change but denied time's essentially different 
nature. The static Platonic (Pythagorean) metaphysics was replaced by causal science ushering in Bacon's 
innovative notion of technological progress. 

We began to disentangle some ofthe far-reaching implications involved in the intricate interrelations of 
the mathematical conceptual changes in this period. Mathematical symbolism reached such a degree of 
complexity that its vocabulary, grammar and syntax parted company with its source verbal matrix. Much 
work remains to be done here since this abstract mathematics where complex concepts are locked inside 
seemingly simple signs, such as those for zero, infinity, 'equals', variables, functions etc, is a deep part of 
our cultural, sedimented history. 

By the end of the 191
h century contradictions again arose. Formalism was an attempt to establish certainty 

in mathematics on the basis of the logical proof form. The attempt failed in the face of GOdel's theorems. 
Wittgenstein pointed out that the desire for foundations can not be satisfied within mathematics. Its phi­
losophy needs to be based in the larger context of the life-world. We investigated possibilities for such a 
philosophy in phenomenology and Lakatos' methodology of mathematical development, given that the 
latter is inherent in mathematical history, waiting to be consciously adopted. Such approaches recognise 
mathematics as a living, creative process, not just product. 

This could be the next stage of mathematics' relationship with time: neither denying it as in Platonic on­
tology, nor neutering it as in Cartesian rationalist science, but recognising that mathematics itself is situ­
ated within historical time. Becoming self-reflective it could claiming its history, and make choices on the 
basis of this recognition. One choice might be to investigate the possibilities of recognising new integer 
qualities in the wonderful mathematical world of the 21 ''century: the specificities of different n­
dimensional spaces, for example. 

One might say that with the Joss of importance ofthe integers, mathematics lost its integrity. Perhaps re­
storing them to their rightful status (in accordance with Gauss' view of number theory as the queen of 
mathematics) might be a tum of the spiral whereby mathematics discovers or recreates a new integrity. 
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1 Introduction 

The simplest discrete system corresponds directly to the square root of minus one, when the 
square root of minus one is seen as an oscillation between plus and minus one. This way thinking 
about the square root of minus one as an iterant is explained below. More generally, by starting 
with a discrete time series of positions, one has immediately a non-commutativity of observations 
since the measurement of velocity involves the tick of the clock and the measurment of position 
does not demand the tick of the clock. Commutators that arise from discrete observation generate 
a non-commutative calculus, and this calculus leads to a generalization of standard advanced 
calculus in terms of a non-commutative world. In a non-commutative world, all derivatives are 
represented by commutators. 

In this view, distinction and process arising from distinction is at the base of the world. Dis­
tinctions are elemental bits of awareness. The world is composed not of things but processes and 
observations. We will discuss how basic Clifford algebra comes from very elementary processes 
like an alternation of+ - + - + - · · · and the fact that one can think of A itself as a temporal 
iterant, a product of an E and an 1J where theE is the + - + - + - · · · and the 1J is a time shift 
operator. Clifford algebra is at the base of the world! And the fermions are composed of these 
things. 

Secion 2 is an introduction to the process algebra of iterants and how the square root of 
minus one arises from an alternating process. Section 3 shows how iterants give an alternative 
way to do 2 x 2 matrix algebra. The section ends with the construction of the split quaternions. 
Section 4 considers iterants of arbitrary period (not just two) and shows, with the example of 
the cyclic group, how the ring of all n x n matrices can be seen as a faithful representation of 
an iterant algebra based on the cyclic group of order n. We then generalize this construction 
to arbitrary non-commutative finite groups G. Such a group has a multiplication table (n x n 
where n is the order of the group G.). We show that by rearranging the multiplication table so 
the identity element appears on the diagonal, we get a set of permutation matrices that represent 

53 



the group faithfully as n x n matrices. This gives a faithful representation of the iterant algebra 
associated with the group G onto the ring of n x n matrices. As a result we see that iterant 
algebra is fundamental to all matrix algebra. Section 4 ends with a number of classical examples 
including iterant represtations for quaternion algebra. Section 5 goes back to n x n matrices and 
shows how the 2 x 2 iterant interpretation generalizes to an n x n matrix construction using the 
symmetric group Sn. In Section 4 we have shown that there is a natural iterant algebra for Sn that 
is associated with matrices of size n! x n!. In Section 5 we show there is another iterant algebra 
for Sn associated with n x n matrices. We study this algebra and state some problems about 
its representation theory. Section 6 is a self-contained miniature version of the whole story in 
this paper, starting with the square root of minus one seen as a discrete oscillation, a clock. We 
proceed from there and analyze the position of the square root of minus one in relation to discrete 
systems and quantum mechanics. We end this section by fitting together these observations into 
the structure of the Heisenberg commutator 

[p, qJ =in. 

Sections 6 and 7 show how iterants feature in discrete physics. Section 8 discusses how Clifford 
algebras are fundamental to the structure of Fermions. We show how the simple algebra of 
the split quaternions, the very first iterant algebra that appears in relation to the square root of 
minus one, is in back of the structure of the operator algebra of the electron. The underlying 
Clifford structure describes a pair of Majorana Fermions, particles that are their own antiparticles. 
These Majorana Fermions can be symbolized by Clifford algebra generators a and b such that 
a2 = b2 = 1 and ab = -ba. One can take a as the iterant corresponding to a period two 
oscillation, and b as the time shifting operator. Then their product ab is a square root of minus 
one in a non-commutative context. These are the Majorana Fermions that underlie an electron. 
The electron can be symbolized by 4> = a+ ib and the anti-electron by 4>t = a - ib. These form 
the operator algebra for an electron. Note that 

4>2 = (a+ ib)(a + ib) = a2
- b2 + i(ab + ba) = 0 + iO = 0. 

This nilpotent structure of the electron arises from its underlying Clifford structure in the form 
of a pair of Majorana Fermions. Section 8 then shows how braiding is related to the Majorana 
Femions. Section 9 discusses the fusion algebra for a Majorana Fermion in terms of the formal 
structure of the calculus of indications of G. Spencer-Brown [1]. In this formalism we have a 
logical particle P that is its own anti-particle. Thus P interacts with itself to either produce itself 
or to cancel itself. Exactly such a formalism was devised by Spencer-Brown as a foundation 
for mathematics based on the concept of distinction. This section gives a short exposition of 
the calculus of indications and shows how, by way of iterants, the Fermion operators arise from 
recursive distinctions in the form of the re-entering mark. With this, we return to the square 
root of minus one in yet another way. Section 10 discusses the structure of the Dirac equation 
and how the nilpotent and the Majorana operators arise naturally in this context. This section 
provides a link between our work and the work on nilpotent structures and the Dirac equation 
of Peter Rowlands [26]. We end this section with an expression in split quaternions for the the 
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Majorana Dirac equation in one dimension of time and three dimensions of space. The Majorana 
Dirac equation can be written as follows: 

(8/&t + iJT18/8x + E8/8y + f.'f/8/8z- f.iJT/m)'I/J = o 
where T/ and E are the simplest generators of iterant algebra with 'f/

2 = E
2 = 1 and 'f/E + E'f/ = 0, 

and f., i] form a copy of this algebra that commutes with it. This combination of the simplest 
Clifford algebra with itself is the underlying structure of Majorana Fermions, forming indeed the 
underlying structure of all Fermions. The ending of the present paper forms the beginning of a 
study of the Majorana equation using iterants that will commence in sequels to this paper. 

This paper is a stopping-place along the way in a larger story of processes, mathematics and 
physics that we are in the process of telling and exploring. To begin the story, we conclude this 
introduction with a fable about dice, time and the Schrodinger equation. 

1.1 God Does Not Play Dice! 

Here is a little story about the square root of minus one and quantum mechanics. 

God said - I would really like to be able to base the universe on the Diffusion Equation 

8'1/J/ {)t = K82 '1/J/ 8x2
. 

But I need to have some possibility for interference and waveforms. And it should be simple. So 
I will just put a "plus or minus" ambiguity into this equation, like so: 

±81/J/&t = K82'1j;/8x2
. 

This is good, but it is not quite right. I do not play dice. The ± coefficient will have to be 
lawful, not random. Nothing is random. What to do? Aha! I shall take± to mean the alternating 
sequence 

±= .. ·+-+-+-+- ... 
and time will become discrete. Then the equation will become a difference equation in space and 
time 

where 
8;,'1/Jt = '1/Jt(X- dx)- 2'1/Jt(X) + '1/Jt(X + dx). 

This will do it, but I have to consider the continuum limit. But there is no meaning to 

in the realm of continuous time. What do do? Ah! In the discrete world my wave function (not a 
bad name for it!) divides into '1/Je and '1/Jo where the time is either even or odd. So I can write 

8t'I/Je = KfJ.~'I/Jo 

8t'I/Jo = -K8;,'1/Je· 
I will take the continuum limit of '1/Je and '1/Jo separately! 
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Finally, a use for that so called imaginary number that Merlin has been bothering me with 
(You might wonder how Merlin could do this when I have not created him yet, but after all I am 
that am.). This i has the property that i 2 = -1 so that 

i(A+iB) =iA-B 

when A and Bare ordinary numbers, 
i = -1/i, 

and so you see that if i = 1 then i = -1, and if i = -1 then i = 1. So i just spends its time 
oscillating between + 1 and -1, but it does it lawfully and so I can regard it as a definition that 

i = ±1. 

In fact, I can see now what Merlin what getting at. When I multiply ii = (±1)(±1), I get -1 
because the i takes a little time to oscillate and so by the time this second term multiplies the first 
term, they are just out of phase and so we get either (+1)( -1) = -1 or ( -1)(+1) = -1. Either 
way, ii = -1 and we have the perfect ambiguity. Heh. People will say that I am playing dice, 
but it is just not so. Now ±1 behaves quite lawfully and I can write 

so that 

Thus 

iEJt'l/J = i8t('I/Je + i'I/Jo) = i8t'I/Je- Bt'I/Jo 

= iKEf;,'l/!0 + KB-;'1/Je = KB-;('1/Je + i'I/Jo) 

= KEi;,'I/J. 

iEJI/J/ EJt = K82 '1/J/ 8x2 
. 

I shall call this the Schroedinger equation. Now I can rest on this seventh day before the real 
creation. This is the imaginary creation. Instead of the simple diffusion equation, I have a mutual 
dependency where the temporal variation of '1/Je is mediated by the spatial variation of ·1/10 and 
vice-versa. This is the price I pay for not playing dice. 

'1/J = '1/Je + i·l/Jo 

Bt'I/Je = KB-;'1/Jo 

Bt'I/Jo = -KEJ;,'Ij;e. 

i81/J I &t = K82 '1/J/ 8x2 
0 

Remark. The discrete recursion at the beginning of this tale, can actually be implemented to 
approximate solutions to the Schroedinger equation. This will be studied in a separate paper. 
The reader may wish to point out that the playing of dice in quantum mechanics has nothing to 
do with the deterministic evolution of the Schroedinger equation, and everything to do with the 
measurment postulate that interprets '1/J'I/Jt as a probability density. The author (not God) agrees 
with the reader, but points out that God himself does not seem to have said anything about the 
measurement postulate. This postulate was born (or should we say Born?) after the Schoedinger 
equation was conceived. So we submit that it is not God who plays dice. 
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Probability and generalizations of classical probability are necessary for doing science. One 
should keep in mind that the quantum mechanics is based on a model that takes the solution of 
the Schroedinger equation to be a superposition of all possible observations of a given observer. 
The solution has norm equal to one in an appropriate vector space. That norm is the integral of 
the absolute square of the wave function over all of space. The absolute square of the wavefunc­
tion is seen as the associated probability density. This extraordinary and concise recipe for the 
probability of observed events is at the core of this subject. It is natural to ask, in relation to 
our fable, what is the relationship of probability for the diffusion process and the probability in 
quantum theory. This will have to be the subject of another paper and perhaps another fable. 
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2 Iterants, Discrete Processes and Matrix Algebra 

The primitive idea behind an iterant is a periodic time series or "waveform" 

· · · abababahabab · · · . 

The elements of the waveform can be any mathematically or empirically well-defined objects. 
We can regard the ordered pairs [a, bj and [b, a] as abbreviations for the waveform or as two 
points of view about the waveform (a first orb first). Call [a, b] an iterant. One has the collection 
of transformations of the form T[a, b] = [ka, k-1b]Ieaving the product ab invariant. This tiny 
model contains the seeds of special relativity, and the iterants contain the seeds of general matrix 
algebra! For related discussion see [2, 3, 4, 5, 12, 10, 13, 1]. 

Define products and sums of iterants as follows 

[a, bj[c, dj = [ac, bdj 

and 
[a, b] + [c, dj = [a+ c, b + dj. 

The operation of juxtapostion of waveforms is multiplication while+ denotes ordinary addition 
of ordered pairs. These operations are natural with respect to the structural juxtaposition of 
iterants: 

.. . abababababab .. . 

. . . cdcdcdcdcdcd .. . 

Structures combine at the points where they correspond. Waveforms combine at the times where 
they correspond. Iterants combine in juxtaposition. 
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If • denotes any form of binary compositon for the ingredients (a,b, ... ) of iterants, then we 
can extend • to the iterants themselves by the definition (a, b] • (c, d] = (a • c, b • d]. 

The appearance of a square root of minus one unfolds naturally from iterant considerations. 
Define the "shift" operator TJ on iterants by the equation 

TJ[a, b] = (b, a]TJ 

with 'T/2 = 1. Sometimes it is convenient to think of TJ as a delay opeator, since it shifts the 
waveform ... ababab ... by one internal time step. Now define 

i = (-1, 1]TJ 

We see at once that 

ii = (-1, 1]TJ(-1, 1]TJ = (-1, 1](1, -1]TJ2 = (-1, 1](1, -1] = (-1, -1] = -1. 

Thus 
ii = -1. 

Here we have described i in a new way as<the superposition of the waveform E = (-1, 1] and the 
temporal shift operator 'T/· By writing i = ETJ we recognize an active version of the waveform that 
shifts temporally when it is observed. This theme of including the result of time in observations 
of a discrete system occurs at the foundation of our construction. 

In the next section we show how all of matrix algebra can be formulated in terms of iterants. 

3 MATRIX ALGEBRA VIA ITERANTS 

Matrix algebra has some strange wisdom built into its very bones. Consider a two dimensional 
periodic pattern or "waveform." 

.. . abababababababab ... 

... cdcdcdcdcdcdcdcd ... 

... abababababababab .. . 

. . . cdcdcdcdcdcdcdcd .. . 

. . . abababababababab .. . 
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I 

Above are some of the matrices apparent in this array. Compare the matrix with the "two dimen­
sional waveform" shown above. A given matrix freezes out a way to view the infinite waveform. 
In order to keep track of this patterning, lets write 

[a, b] + [c, dJ11 = ( ~ ~ ) . 

where 

[x, y] = ( ~ ~ ) . 

and 

7]=(~ ~)· 
Recall the definition of matrix multiplication. 

Compare this with the iterant multiplication. 

([a, b] + [c, dJ7J)([e, f] + [g, h]17) = 

[a, b][e, f] + [c, dJ7J[g, h]17 +[a, b][g, h]17 + [c, dJ7J[e, /] = 

[ae, bf] + [c, d][h, g] + ([ag, bh] + [c, d][f, e])17 = 

[ae, bf] + [ch, dg] + ([ag, bh] + [cf, de])1] = 

[ae + ch, dg + bf] + [ag + cf, de+ bh]1J. 

Thus matrix multiplication is identical with iterant multiplication. The concept of the iterant can 
be used to motivate matrix multiplication. 

The four matrices that can be framed in the two-dimensional wave form are all obtained from the 
two iterants [a, dJ and [b, c] via the shift operation 17[x, y] = [y, x]17 which we shall denote by an 
overbar as shown below 

[x, y] = [y, x]. 

Letting A= [a, d] and B = [b, c], we see that the four matrices seen in the grid are 

The operator 17 has the effect of rotating an iterant by ninety degrees in the formal plane. Ordinary 
matrix multiplication can be written in a concise form using the following rules: 
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where Q is any two element iterant. Note the correspondence 

( ~ ~ ) = ( ~ ~ ) ( ~ ~ ) + ( ~ ~ ) ( ~ ~ ) =[a, c41 + [b, c]7J. 

This means that [a, c4 corresponds to a diagonal matrix. 

7] corresponds to the anti-diagonal permutation matrix. 

and [b, c]77 corresponds to the product of a diagonal matrix and the permutation matrix. 

(b, c]7J = ( ~ ~ ) ( ~ ~ ) = ( ~ ~ ) . 

Note also that 

77[c, b] = ( ~ ~ ) ( ~ ~ ) = ( ~ ~ ) . 

This is the matrix interpretation of the equation 

[b, c]77 = 77[c, b]. 

The fact that the iterant expression (a, d]1 + (b, c]77 captures the whole of 2 x 2 matrix algebra 
corresponds to the fact that a two by two matrix is combinatorially the union of the identity pattern 
(the diagonal) and the interchange pattern (the antidiagonal) that correspond to the operators 1 
and 7]. 

In the formal diagram for a matrix shown above, we indicate the diagonal by * and the anti­
diagonal by @. 

In the case of complex numbers we represent 

(
a -b) b a =[a, a]+ (-b, b]77 = a1 + b(-1, 1]7] =a+ bi. 

In this way, we see that all of 2 x 2 matrix algebra is a hypercomplex number system based on the 
symmetric group S2 • In the next section we generalize this point of view to arbirary finite groups. 
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We have reconstructed the square root of minus one in the form of the matrix 

. ( 0 -1) Z=E'l/=[-1,1]17= 1 O . 

In this way, we arrive at this well-known representation of the complex numbers in terms of 
matrices. Note that if we identify the ordered pair (a, b) with a + ib, then this means taking the 
identification 

(
a -b) (a,b)= b a . 

Thus the geometric interpretation of multiplication by i as a ninety degree rotation in the Carte­
sian plane, 

i(a,b) = (-b,a), 

takes the place of the matrix equation 

( 
0 -

0
1 ) ( ab -ab ) = ( -ab -a ) . i(a,b)= 1 -b =b+za=(-b,a). 

In iterant terms we have 

i[a, b] = E'l/[a, b] = [-1, 1][b, a]17 = [-b, a]17, 

and this corresponds to the matrix equation 

All of this points out how the complex numbers, as we have previously examined them, live nat­
urally in the context of the non-commutative algebras of iterants and matrices. The factorization 
of i into a product E'l/ of non-commuting iterant operators is closer both to the temporal nature of 
i and to its algebraic roots. 

More generally, we see that 

(A+ B17)(C + D17) = (AC +ED)+ (AD+ BC)17 

writing the 2 x 2 matrix algebra as a system of hypercomplex numbers. Note that 

The formula on the right equals the determinant of the matrix. Thus we define the conjugate of 
Z = A + B17 by the formula 

and we have the formula 
D(Z) = ZZ 
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for the determinant D(Z) where 

where A= [a, b] and B = [c, d). Note that 

AA = [ab, ba] = abl = ab, 

so that 
D(Z) = ab- cd. 

Note also that we assume that a, b, c, d are in a commutative base ring. 

Note also that for Z as above, 

- - ( b Z=A- B1]= -d 

This is the classical adjoint of the matrix Z. 

We leave it to the reader to check that for matrix iterants Z and TV, 

ZZ=ZZ 

and that 

ZW=WZ 

and 

Z+W=Z+W. 

Note also that 

whence 

We can prove that 
D(ZW) = D(Z)D(W) 

as follows 
D(ZW) = ZWZW = ZWW Z = ZZWW = D(Z)D(W). 

Here the fact that TVTV is in the base ring which is commutative allows us to remove it from in 
between the appearance of Z and Z. Thus we see that iterants as 2 x 2 matrices form a direct 
non-commutative generalization of the complex numbers. 
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It is worth pointing out the first precursor to the quatemions ( the so-called split quatemions): 
This precursor is the system 

{±1, ±E, ±77, ±i}. 

Here EE = 1 = 7171 while i = E77 so that ii = -1. The basic operations in this algebra are those of 
epsilon and eta. Eta is the delay shift operator that reverses the components of the iterant. Epsilon 
negates one of the components, and leaves the order unchanged. The quaternions arise directly 
from these two operations once we construct an extra square root of minus one that commutes 
with them. Call this extra root of minus one J=I. Then the quaternions are generated by 

with 

The "right" way to generate the quaternions is to start at the bottom iterant level with boolean 
values of 0 and 1 and the operation EXOR (exclusive or). Build iterants on this, and matrix 
algebra from these iterants. This gives the square root of negation. Now take pairs of values from 
this new algebra and build 2 x 2 matrices again. The coefficients include square roots of negation 
that commute with constructions at the next level and so quaternions appear in the third level 
of this hierarchy. We will return to the quaternions after discussing other examples that involve 
matrices of all sizes. 

4 lterants of Arbirtarily High Period 

As a next example, consider a waveform of period three. 

· · · abcabcabcabcabcabc · · · 

Here we see three natural iterant views (depending upon whether one starts at a, b or c). 

[a, b, c), [b, c, a], [c, a, b]. 

The appropriate shift operator is given by the formula 

[x, y, z]S = S[z, x, y]. 

Thus, with T = EP, 
[x, y, z]T = T[y, z, x] 

and 8 3 = 1. With this we obtain a closed algebra of iterants whose general element is of the form 

[a, b, c] + [d, e, f]S + [g, h, k]S2 

where a, b, c, d, e, J, g, h, k are real or complex numbers. Call this algebra Vect3 (R) when the 
scalars are in a commutative ring with unit lF. Let lv!3 (IF) denote the 3 x 3 matrix algebra over IF. 
We have the 
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Lemma. The iterant algebra Vect3 (JF) is isomorphic to the full3 x 3 matrix algebra M 3 ((JF). 

Proof. Map 1 to the matrix 

0 0 n 1 
0 

Map S to the matrix 

(~ 
1 

~) 0 
0 

and map 8'2 to the matrix 

0 0 n 0 
1 

Map [x, y, z] to the diagonal matrix 

(~ 
0 

~) y 
0 

Then it follows that 

[a, b, c] + [d, e, f]S + [g, h, k]~ 

maps to the matrix 

(

a d g) 
h b e , 
f k c 

preserving the algebra structure. Since any 3 x 3 matrix can be written uniquely in this form, it 
follows that Vect3(1F) is isomorphic to the full3 x 3 matrix algebra M 3 (1F). I I 

We can summarize the pattern behind this expression of 3 x 3 matrices by the following 
symbolic matrix. 

Here the letter T occupies the positions in the matrix that correspond to the permutation matrix 
that represents it, and the letter T = 8'2 occupies the positions corresponding to its permutation 
matrix. The 1 's occupy the diagonal for the corresponding identity matrix. The iterant represen­
tation corresponds to writing the 3 x 3 matrix as a disjoint sum of these permutation matrices 
such that the matrices themselves are closed under multiplication. In this case the matrices form 
a permutation representation of the cyclic group of order 3, C3 = {1, S, 8'2}. 
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Remark. Note that a permutation matrix is a matrix of zeroes and ones such that some permu­
tation of the rows of the matrix transforms it to the identity matrix. Given an n x n permutation 
matrix P, we associate to it a permuation 

(T(P): {1, 2, · · · , n}---> {1, 2, · · · , n} 

via the following formula 
i(T(P) = j 

where j denotes the column in P where the i-th row has a 1. Note that an element of the domain 
of a permutation is indicated to the left of the symbol for the permutation. It is then easy to check 
that for permutation matrices P and Q, 

given that we compose the permutations from left to right according to this convention. 

It should be clear to the reader that this construction generalizes directly for iterants of any 
period and hence for a set of operators forming a cyclic group of any order. In fact we shall 
generalize further to any finite group G. We now define Vedn(G, JF) for any finite group G. 

Definition. Let G be a finite group, written multiplicatively. Let lF denote a given commutative 
ring with unit. Assume that G acts as a group of permutations on the set {1, 2, 3, · · · , n} so that 
given an element g E G we have (by abuse of notation) 

g: {1,2,3,··· ,n}---> {1,2,3,··· ,n}. 

We shall write 
ig 

for the image of i E {1, 2, 3, · · · , n} under the permutation represented by g. Note that this 
denotes functionality from the left and so we ask that (ig)h = i(gh) for all elements g, h E G 
and i1 = i for all i, in order to have a representation of G as permutations. We shall call an 
n-tuple of elements oflF a vector and denote it by a= (a1 , 11:!, · · · , a,). We then define an action 
of G on vectors over lF by the formula 

and note that (aY)h = aYh for all g, h E G. We now define an algebra Vedn(G, JF), the iterant 
algebra for G, to be the set of finite sums of formal products of vectors and group elements in 
the form ag with multiplication rule 

(ag)(bh) = abY(gh), 

and the understanding that (a+ b)g = ag + bg and for all vectors a, b and group elements 
g. It is understood that vectors are added coordinatewise and multiplied coordinatewise. Thus 
(a+ b);= a;+ b; and (ab); = a;b;. 
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Theorem. Let G be a finite group of order n. Let p : G -----> Sn denote the right regular represen­
tation of Gas permutations of n things where we list the elements of Gas G = {g1, · · · , 9n} and 
let G act on its own underlying set via the definition g;p(g) = g;g. Here we describe p(g) acting 
on the set of elements 9k of G. If we wish to regard p(g) as a mapping of the set { 1, 2, · · · n} then 
we replace 9k by k and ip(g) = k where g;g = 9k· 

Then Vectn(G,JF) is isomorphic to the matrix algebra .Mn((JF). In particular, we have that 
Vectn!(Sn, lF) is isomorphic with the matrices of size n! x n!, .Mn!((JF). 

Proof. Consider then x n matrix consisting in the multiplication table for G with the columns and 
rows listed in the order [g1 , · · · , 9n]· Permute the rows of this table so that the diagonal consists 
in all1 's. Let the resulting table be called the G-Table. The G-Table is labeled by elements of the 
group. For a vector a, let D(a) denote then x n diagonal matrix whose entries in order down the 
diagonal are the entries of a in the order specified by a. For each group element g, let P9 denote 
the permutation matrix with 1 in every spot on the G-Table that is labeled by g and 0 in all other 
spots. It is now a direct verification that the mapping 

defines an isomorphism from Vectn( G, JF) to the matrix algebra Mn( (JF). The main pointto check 
is that a(P9 ) = p(g). We now prove this fact. 

In the G-Table the rows correspond to 

{ 
-1 -1 -1} g1 ,g2 ' ... 9n 

and the columns correspond to 

{g1, 92, · · · 9n} 

so that the i-i entry of the table is gj1g; = 1. With this we have that in the table, a group element 
g occurs in the i-th row at column j where 

-1 
9; gj =g. 

This is equivalent to the equation 

g;g = 9i 

which, in turn is equivalent to the statement 

ip(g) = j. 

This is exactly our functional interpretation of the action of the permutation corresponding to the 
matrix P9 • Thus 

p(g) = a(P9 ). 

The remaining details of the proof are straightforward and left to the reader. I I 

66 



Examples. 

1. We have already implicitly given examples of this process of translation. Consider the 
cyclic group of order three. 

c3 = {1, s, Sl} 

with S 3 = 1. The multiplication table is 

Interchanging the second and third rows, we obtain 

and this is the G-Table that we used for Vect3(C3 , IF) prior to proving the Main Theorem. 

The same pattern works for abitrary cyclic groups. for example, consider the cyclic group 
of order 6. C6 = {1, S, [)2, S3, S4, S5 } with sB = 1. The multiplication table is 

1 s [)2 s3 S4 s5 
s [)2 S3 S4 S5 1 
[)2 s3 s4 s5 1 s 
S3 S4 s5 1 s [)2 
S4 S5 1 s [)2 s3 
S5 1 s 52 s3 S4 

Rearranging to form the G-Table, we have 

1 s 52 S3 S4 S5 
s5 1 s 52 s3 S4 
s4 S5 1 s 52 S3 
s3 s4 s5 1 s [)2 

52 S3 s4 S5 1 s 
s [)2 s3 s4 s5 1 

The permutation matrices corresponding to the positions of Sk in the G-Table give the 
matrix representation that gives the isomorphsm of Vect6 ( C6 , IF) with the full algebra of 
six by six matrices. 

2. Now consider the symmetric group on six letters, 
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where R3 = 1, F2 = 1, F R = RF2. Then the multiplication table is 

1 R R2 F RF R2F 
R R2 1 RF R2F F 
R2 1 R R2F F RF 
F R2F RF 1 R2 R 

RF F R2F R 1 R2 
R2F RF F R2 R 1 

The corresponnding G-Table is 

1 R R2 F RF R2 F 
R2 1 R R2 F F RF 
R R2 1 RF R2F F 
F R2F RF 1 R2 R 

RF F R2F R 1 R2 
R2F RF F R2 R 1 

Here is a rewritten version of the G-Table with 

R = !:::. R2 = 8 F = \[1 RF = !1 R2 F = L; ' ' ' ' . 

1 !:::. e \[1 !1 L; 

e 1 !:::. L; \[1 !1 
!:::. e 1 !1 L; \[1 

\[1 L; !1 1 e !:::. 
!1 \[1 L; !:::. 1 e 

' L; !1 \[1 e !:::. 1 

This G-Table is the keystone for the isomorphism of Ved6 (S3 ,1F) with the full algebra of 
six by six matrices. At this point it may occur to the reader to wonder about Ved3(S3 , JF) 
since S3 does act on vectors of length three. We will discuss Vedn(Sn,lF) in the next 
section. We see from this example how it will come about that Vedn!(Sn, JF) is isomorphic 
with the full algebra of n! x n! matrices. In particular, here are the permutation matrices 
that form the non-identity elements of this representation of the symmetric group on three 
letters. 

0 1 0 0 0 0 
0 0 1 0 0 0 

R=!:::.= 1 0 0 0 0 0 
0 0 0 0 0 1 
0 0 0 1 0 0 
0 0 0 0 1 0 
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0 0 1 0 0 0 
1 0 0 0 0 0 

R2 =8= 
0 1 0 0 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
0 0 0 1 0 0 

0 0 0 1 0 0 
0 0 0 0 1 0 

F=iJJ= 
0 0 0 0 0 1 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 

0 0 0 0 1 0 
0 0 0 0 0 1 

FR=rl= 
0 0 0 1 0 0 
0 0 1 0 0 0 
1 0 0 0 0 0 
0 1 0 0 0 0 

0 0 0 0 0 1 
0 0 0 1 0 0 

FR2 = E = 
0 0 0 0 1 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
1 0 0 0 0 0 

3. In this example we consider the group G = C2 x C2 , often called the "Klein 4-Group." 
We take G = {1, A, B, C} where A2 = B 2 = C 2 = 1, AB = BA =C. Thus G has the 
multiplication table, which is also its G-Tab lefor Vect4( G, IF). 

( 
1 A B C) 
A 1 C B 
B C 1 A . 
C B A, 1 

Thus we have the following permutation matrices that I shall call E, A, B, C : 

E= ( ~ ~ 
0 0 
0 0 
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u 
1 0 

D· A= 
0 0 
0 0 
0 1 

u 
0 1 

D B= 
0 0 
0 0 
1 0 

(! 
0 0 

D C= 
0 1 
1 0 
0 0 

The reader will have no difficulty verifying that A2 = B 2 = C2 = 1, AB = BA = C. 
Recall that [x, y, z, w] is iterant notation for the diagonal matrix 

Let 
a= [1, -1, -1, 1], ,B = [1, 1, -1, -1],')' = [1, -1, 1, -1]. 

And let 
I = aA, J = ,BB, K = ')'C. 

Then the reader will have no trouble verifying that 

I 2 = J2 = K 2 = IJK = -1,IJ = K, JI = -K. 

Thus we have constructed the quatemions as iterants in relation to the Klein Four Group. 
in Figure 1 we illustrate these quaternion generators with string diagrams for the permuta­
tions. The reader can check that the permuations correspond to the permutation matrices 
constructed for the Klein Four Group. For example, the permutation for I is (12)(34) in 
cycle notation, the permutation for J is (13)(24) and the permutation forK is (14)(23). In 
the Figure we attach signs to each string of the permutation. These "signed permutations" 
act exactly as the products of vectors and permutations that we use for the iterants. One 
can see that the quaternions arise naturally from the Klein Four Group by attaching signs 
to the generating permutations as we have done in this Figure. 

4. One can use the quatemions as a linear basis for 4 x 4 matrices just as our theorem would 
use the permutation matrices 1, A, B, C. If we restrict to real scalars a, b, c, d such that 
a2 + b2 + c2 + c2 = 1, then the set of matrices of the form a1 + bi + cJ + dK is isomorphic 
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J K 

II=JJ=KK=IJK=-1 

Figure 1: Quaternions From Klein Four Group 

to the group SU(2). To see this, note that SU(2) is the set of matrices with complex entries 
z and w with determinant 1 so that zz + wiil = 1. 

M=( z_ ~)--w z 

Letting z = a + IYi and w = c + di, we have 

1f we regard i = A as a commuting scalar, then we can write the generating matrices in 
terms of size two iterants and obtain 

as described in the previous section. IF we regard these matrices with complex entries as 
shorthand for 4 x 4 matrices with i interpreted as a 2 x 2 matrix as we have done above, then 
these 4 x 4 matrices representing the quatemions are exactly the ones we have constructed 
in relation to the Klein Four Group. 

Since complex numbers commute with one another, we could col)sider iterants whose val­
ues are in the complex numbers. This is just like considering matrices whose entries are 
complex numbers. For this purpose we shall allow given a version of i that commutes with 
the iterant shift operator 7J- Let this commuting i be denoted by L. Then we are assuming 
that 
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We then consider iterant views of the form [a+ bt, c + dt] and [a+ bt, c + dt]1] = 17[c + 
dt, a+ bt]. In particular, we have E = [1, -1], and i = E7] is quite distinct from t. Note, as 
before, that E7] = -7]E and that E2 = 1. Now let 

I= £E 

J = E7] 

K = t1]. 

We have used the commuting version of the square root of minus one in these definitions, 
and indeed we find the quaternions once more. 

Thus 

I 2 =tEtE= UEE = {-1){+1) = -1, 

J2 = E1]E1] = E(-E)1]1] = -1, 

K 2 = £1]£1] = £L1}T] = -1, 

I J K = £EE1]£1] = t1£1]1] = u = -1. 

This construction shows how the structure of the quaternions comes directly from the non­
commutative structure of period two iterants. In other, words, quaternions can be repre­
sented by 2 x 2 matrices. This is the way it has been presented in standard language. The 
group SU(2) of 2 x 2 unitary matrices of determinant one is isomorphic to the quaternions 
of length one. 

5. Similarly, 

(
a c+dt) H = [a, b] + [c + dt, c - dt]1] = c _ dt b · 

represents a Hermitian 2 x 2 matrix and hence an observable for quantum processes medi­
ated by SU(2). Hermitian matrices have real eigenvalues. 
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If in the above Hermitian matrix form we take a = T +X, b = T - X, c = Y, d = Z, then 
we obtain an iterant and/or matrix representation for a point in Minkowski spacetime. 

( 
T+X Y+Z~) H = [T+X,T-X] + [Y +Z~,Y- Z£)77= y -z~ T-X · 

Note that we have the formula 

It is not hard to see that the eigenvalues of H are T ± -/ X 2 + Y 2 + Z2 • Thus, viewed as 
an observable, H can observe the time and the invariant spatial distance from the origin of 
the event (T, X, Y, Z). At least at this very elementary juncture, quantum mechanics and 
special relativity are reconciled. 

6. Hamilton's Quaternions are generated by iterants, as discussed above, and we can express 
them purely algebraicially by writing the corresponding permutations as shown below. 

where 

I= [+1, -1, -1, +l]s 

J = [+1, +1, -1, -1]1 

K=[+1,-1,+1,-1]t 

s = (12)(34) 

l = (13)(24) 

t = {14)(23). 

Here we represent the permutations as products of transpositions (ij). The transposition 
(ij) interchanges i and j, leaving all other elements of {1, 2, ... , n} fixed. 

One can verify that 

For example, 

J2 = [+1, -1, -1, +l]s[+l, -1, -1, +l]s 

= [+1, -1, -1, +1][-1, +1, +1, -1]ss 

= [-1, -1, -1, -1] 

=-1. 
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and 

IJ = [+1, -1, -1, +l]s[+l, +1, -1, -1]1 

= [+1, -1, -1, +1][+1, +1, -1, -1]sl 

= [+1, -1, +1, -1](12)(34)(13)(24) 

= [+1, -1, +1, -1](14)(23) 

= [+1, -1, +1, -1]t. 

Nevertheless, we must note that making an iterant interpretation of an entity like I 
[+ 1, -1, -1, + 1]s is a conceptual departure from our original period two iterant (or cyclic 
period n) notion. Now we are considering iterants such as [+ 1, -1, -1, + 1] where the 
permutation group acts to produce other orderings of a given sequence. The iterant itself 
is not necessarily an oscillation. It can represent an implicate form that can be seen in any 
of its possible orders. These orders are subject to permutations that produce the possible 
views of the iterant. Algebraic structures such as the quaternions appear in the explication 
of such implicate forms. 

The reader will also note that we have moved into a different conceptual domain from 
an original emphasis in this paper on eigenform in relation to to recursion. That is, we 
take an eigenjorm to mean a fixed point for a transformation. Thus i is an eigenform for 
R(x) = -1/x. Indeed, each generating quatemion is an eigenform for the transformation 
R(x) = -1/x. The richness of the quaternions arises from the closed algebra that arises 
with its infinity of eigenforms that satisfy the equation U2 = -1 : 

U=al +bJ +cK 

where a2 + b2 + c2 = 1. This kind of significant extra structure in the eigenforms comes 
from paying attention to specific aspects of implicate and explicate structure, relationships 
with geometry and ideas and inputs from the perceptual, conceptual and physical worlds. 
Just as with our other examples of phenomena arising in the course of the recursion, we 
see the same phenomena here in the evolution of matheamatical and theoretical physical 
structures in the course of the recursion that constitutes scientific conversation. 

7. In all these examples, we have the opportunity to interpret the iterants as short hand for 
matrix algebra based on permutation matrices, or as indicators of discrete processes. The 
discrete processes become more complex in proportion to the complexity of the groups 
used in the construction. We began with processes of order two, then considered cyclic 
groups of arbitrary order, then the symmetric group S3 in relation to 6 x 6 matrices, and the 
Klein Four Group in relation to the quaternions. In the case of the quaternions, we know 
that this structure is intimately related to rotations of three and four dimensional space and 
many other geometric themes. It is worth reflecting on the possible significance of the 
underlying discrete dynamics for this geometry, topology and related physics. 
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5 The lterant Algebra An 
In this section, we will formulate relations with matrix algebra as follows. Let Atf be an n x n 
matrix over a ring F. Let Atf = (mii) denote the matrix entries. Let 1r be an element of the 
symmetric group Sn so that 11'1! 1r2 , • • • , 1r n is a permuation of 1, 2, · · · , n. Let v = [v1 , v2 , • • • , Vn] 
denote a vector with these components. Let ~(v) denote the diagonal matrix whose i - th 
diagonal entry is v;. Let v" = [v,.., · · · ,v,.J. Let S"(v) = ~(v"). Let~ denote any diagonal 
matrix and~.- denote the corresponding permuted diagonal matrix as just described. Let P[n] 
denote the permutation matrix obtained by taking the i - th row of P[1r] to be the 11'; - th row 
of the identity matrix. Note that P[1r]~ = ~.-P[1r]. For each element 1r of Sn define the vector 
v(M, 1r) = [m1.-., · · · , mn.-"] and the diagonal matrix ~[M].- = ~(v(M, 1r)). 

Given ann x n permutation matrix P[o-] and a diagonal matrix D, the matrix DP[o-] has the 
entries of D in those places where there were 1 's in P[o-]. Let a( D) = [D11 , D22 , · · • , Dnn] be 
the iterant associated with D. 

Consider n-tuples a = [a1 , · · · , an] where a; E F, and let the symmetric group Sn act on 
these n-tuples by permutation of the coordinates. Let e; denote such an a where a; = 1 and 
all the other coordinates are zero. Let a" = [au(l), · · · , au(n)] be the vector obtained by letting 
o- E Sn act on a. Note that 

k=n 

a= Lakek' 
k=l 

Define the iterant algebra An to be the module over F with basis B = { eoli = 1, · · · n; "'( E Sn} 
where the algebra structure is given by 

We see that 
dim(An) = n x n! = n2 x (n- 1)!. 

Let Atf atr n denote the set of n x n matrices over the ring F. Note that since the permutation 
representation used for Sn is the same as the right regular representation only for n = 2, we have 
that A2 -:::: Atfatr2 -:::: Ved2 (S2 , JF), as defined in the previous section. For other values of n we 
will analyze the relationships of these rings. 

Let 
p : An -----> AI atr n 

via 
p(an) = ~(a)P[o-] 

where ~(a) is the diagonal matrix associated with the iterant a and P[o-] is the permutation 
matrix associated with the permuation o-. Then p is a matrix representation of the iterant algebra 
An. This is not a faithful representation. Note that if o-( i) = T( i) for permuations o- and T, 
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then p(e;a) = p(e;r). It remains to be seen how to form the full representation theory for the 
algebra A,. This will be a generalization of the representation theory for the group algebra of the 
symmetric group, which is A1. 

A reason for discussing these formulations ofmatrix algebra in the present context is that one 
sees that matrix algebra is generated by the simple operations of juxtaposed addition and multi­
plication, and by the use of permutations as operators. These are unavoidable discrete elements, 
and so the operations of matrix algebra can be motivated on the basis of discrete physical ideas 
and non-commutativity. The richness of continuum formulations, infinite matrix algebra, and 
symmetry grows naturally out of finite matrix algebra and hence out of the discrete. 

Theorem. Let Jyf denote an n x n matrix with entries in a ring (associative not necessarily 
commutative) with unit. Then 

1 
M = ( _ )II;"Esnb..(M)"P(7r). n 1. 

This means that Mn can be embedded in A,, for we have the map i : Mn --> An defined by 

and 
poi=1uatrn· 

This implies that 

where !Cn is the kernel of p. 

Proof. Let O;i denote the Kronecker delta, equal to 1 when i = j and equal to 0 otherwise. The 
matrix product .6.(M)"[7r] is given as follows. 

1. (.6.(M),.[7r));j =A;,., = A;joj,., if j = 1!";. 

2. (.6.(M),.(7r));i = 0 if j =f 1!";. 

This follows from the fact that 

0 A~.J 
We abbreviate 

b..[M],. = .6.1!". 
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Hence, 

L: .. ESn 0j1r; = ( the number of permutations of123 · · · n with 1I"i = j) = ( n -1)!. This completes 
the proof of the Theorem. II 

Note that the theorem expresses any square matrix as a sum of products of diagonal matrices 
and permutation matrices. Diagonal matrices add and multiply by adding and multiplying their 
corresponding entries. They are acted upon by permutations as described above. This is a full 
generalization of the case n = 2 described in the last section. 

For example, we have the following expansion of a 3 x 3 matrix: 

(

a b 
d e 
g h 

;)=\[(~ ~ ~)+(~ ~ ~)+(~ ~ 
k 2· 0 0 k g 0 0 0 h 

(
OOc) (ObO) (aO 0 e 0 + d 0 0 + 0 0 
gOO OOk Oh 

Here, each term .factors as a diagonal matrix multiplied by a permutation matrix as in 

( ~~~) (~~~)(~~~)-
OhO DOh 010 

It is amusing to note that this theorem tells us that up to the factor of 1/(n- 1)! a unitary matrix 
that has unit complex numbers as its entries is a sum of simpler unitary transformations factored 
into diagonal and permutation matrices. In quantum computing parlance, such a unitary matrix is 
a sum of products of phase gates and products of swap gates (since each permutation is a product 
of transpositions). 

Abbreviating a diagonal matrix by the "iterant" ~[a, b, c], we write 

(

a 0 0) 
0 b 0 = ~[a, b, c]. 
0 0 c 

Then we can write the entire decomposition of the 3 x 3 matrix in the form shown below. 

(
abc) (100) (01 (2!) de f =~[a,e,k] 0 10 +~[b,J,g] 0 0 
ghk 001 10 

0) ( 0 0 1 +~[c,d,h] 1 0 
0 0 1 
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Thus 

e f = b.[a, e, k]+b.[b, J, g]p+b.[c, d, h]l+b.[a, J, h]7+.6.[c, e, g]pr+b.[b, d, k]l7 
b c) 
h k 

= b.[a, e, k] + b.[b, J, g]p + b.[c, d, h]l + b.[a, /, hh + .6.[c, e, gh + b.[b, d, kh. 

Here p = (123) and 7 = 71 = (23), 72 = (13), 7a = (12) in the standard cycle notation 
for permutations. We write abstract permutations and the corresponding permutation matrices 
interchangeably. The reader can easily spot the matrix definitions of these generators of Sa by 
comparing the last equation to previous equation. 

Note that in terms of the mapping p : Aa ----> .M atra, we have that 

p([a, e, k) + [b,/, g)p + [e, d, h)p' + [a,J, h[r, + [e, e, g[r, + [b, d, k),.) - (2!) ( ~ b c) 
e f . 
h k 

In this form, matrix multiplication disappears and we can calculate sums and products en­
tirely with iterants and the action of the permutations on these iterants. The reader will note 
immediately that the full algebra Aa for iterants of size [a, b, c] is larger and more general than 
3 x 3 matrix algebra. We let the entries in the iterants belong to a field F. The most general 
element in this algebra is given by the formula 

I= [a, b, c] + [d, e, f]p+ [g, h, i]p2 + [j, k, ih + [m, n, oh + [p,q, rh. 

where a, b, · · ·1· are elements of F. We do not assume that the group elements are represented by 
matrices, but we do have them act on the iterants [x, y, z] by permuting the coordinates. Letting 
e1 = [1, 0, OJ, e2 = [0, 1, 0], ea = [0, 0, 1], we have that { eigli = 1, 2, 3; g E Sa} is a basis for Aa 
over the field F. Thus the dimension of this algebra is 3 x 3! = 18. 

We have the exact sequence 

0 ----> Kn ----> An ----> lvl atr n ----> 0, 

with p : An ----> lvf atr n and i : lvf atr n ----> An. Here are some examples of elements of the 
ke]J1el Kn of p. Let x = [1, 0, 0] - [1, 0, 0](23) E Aa. Then it is easy to see that p(x) = 0. x 
itself is a non-trivial element of Aa, Note that x2 = 2x, sox is not nilpotent. We know from 
the fundamental classification theorem for associative algebras [25] that An/N (where N is the 
subalgebra of properly nilpotent elements of An) is isomorphic to a full matrix algebra. Thus 
we see that the decomposition that we have given for An is distinct from the one obtained by 
removing the nilpotent elements. It remains to classify the nilpotent subalgebra of An. We shall 
return to this question in a sequel to this paper. 
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Here is a final example of an element in the kernel of p. Consider the matrix 

We can write this matrix quite simply as a sum of scalars times three permutation matrices gen­
erating the cyclic group of order three. 

M=a(~ ~ ~)+b(~ ~ ~)+c(~ ~ ~)· 
001 100 010 

However, our mapping i : lvf atr3 ---+ A3 includes terms for all the permutation matrices and 
adds, essentially, three more terms to this formula. 

2 x i{M) = a1 + b{123) + c{132) + [c, a, b]{13) + [b, c, a]{12) +[a, b, c]{23). 

Consequently, 

y = a1 + b{123) + c{132)- [c, a, b]{13)- [b, c, a]{12) - [a, b, c]{23) 

belongs to the kernel of the mapping p. 

Lemma. The kernel!C3 of the mapping p : A3 ---+ lvf atr3 consists in the elements 

[x,y, z] + [-x, w, th + [r, -y, s]r2 + [p, q, -z]r3 + [-p, -w, -s]p + [-r, -q, -t]p2
. 

Proof. We leave this proof to the reader.// 

Proposition. The kernel!Cn of the mapping p : An ---+ lvf atr n consists in the elements 

such that for all i, j with 1 ::; i, j ::; n, 

L;n:n(i)=j (a"); = 0. 

Thus we have that An/!Cn is isomorphic to the full matrix algebra M atr n. 

Proof. The proposition follows from the fact that p( a) = A where 

A;,i = L;a:a(i)=i (a");. 

II 

In a subsequent paper we shall tum to the apparently more difficult problem of fully under­
standing the structure of the algebras An for n > 3. Here we have seen that the fact that the kernel 
of the mapping p is non-trivial means that there is often a choice in making an iterant represen­
tation for a given matrix or for an algebra of matrices. In many applications, certain underlying 
permutation matrices stand out and so suggest themselves as a basis for an iterant representation. 
This is the case for the quaternions, as we have seen. It is also the case for the Dirac matrices 
and other matrices. that occur in physical applications. We shall discuss some of these examples 
below. 
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6 The Square Root of Minus One is a Clock 

The purpose of this section is to place i, the square root of minus one, and its algebra in a 
context of discrete recursive systems. We begin by starting with a simple periodic process that is 
associated directly with the classical attempt to solve for i as a solution to a quadratic equation. 
We take the point of view that solving x2 = ax+ b is the same (when x =f 0) as solving 

x=a+bfx, 

and hence is a matter of finding a fixed point. In the case of i we have 

and so desire a fixed point 
x = -1/x. 

There are no real numbers that are fixed points for this operator and so we consider the oscillatory 
process generated by 

R(x) = -1/x. 

The fixed point would satisfy 
i = -1/i 

and multiplying, we get that 
ii = -1. 

On the other hand the iteration of R yields 

1,R(1) = -1,R(R(1)) = +l,R(R(R(1))) = -1,+1, -1,+1,-1,·· ·. 

The square root of minus one is a perfect example of an eigenform that occurs in a new and wider 
domain than the original context in which its recursive process arose. The process has no fixed 
point in the original domain. 

Looking at the oscillation between + 1 and -1, we see that there are naturally two phase­
shifted viewpoints. We denote these two views of the oscillation by [+ 1, -1) and[-1, + 1). These 
viewpoints correspond to whether one regards the oscillation at time zero as starting with+ 1 or 
with -1. See Figure 1. 

We shall let I { + 1, -1} stand for an undisclosed alternation or ambiguity between + 1 and 
-rand call J{ +1, -1} an iterant. There are two iterant views: [+1, -1) and [-1, +1). 

Given an iterant [a, b), we can think of [b, a] as the same process with a shift of one time step. 
These two iterant views, seen as points of view of an alternating process, will become the square 
roots of negative unity, i and -i. 

We introduce a temporal shift operator 'fJ such that 

[a, b]'TJ = 'fJ[b, a] 
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... +1, -1, +1, -1, +1, -1, +1, -1, ... 

[-1,+1] [+1,-1] 

Figure 2: A Basic Oscillation 

and 

1J1J = 1 

for any iterant [a, b], so that concatenated observations can include a time step of one-half period 
of the process 

· · ·abababab· · ·. 

We combine iterant views term-by-term as in 

[a, b][c, d] = [ac, bd]. 

We now define i by the equation 
i = [-1, 1]1J. 

This makes i both a value and an operator that takes into account a step in time. 

We calculate 

ii = [-1, 1]1J[-1, 1]1J = [-1, 1][1, -1]1J1J = [-1, -1] = -1. 

Thus we have constructed the square root of minus one by using an iterant viewpoint. In this 
view i represents a discrete oscillating temporal process and it is an eigenform for R(x) = -1/x, 
participating in the algebraic structure of the complex numbers. In fact the corresponfling algebra 
structure of linear combinations [a, b] + [c, dJ1J is isomorphic with 2 x 2 matrix algebra and iterants 
can be used to construct n x n matrix algebra, as we have already discussed in this paper. 

The Temporal Nexus. We take as a matter of principle that the usual real variable tfor time is 
better represented as it so that time is seen to be a process, an observation and a magnitude all at 
once. This principle of "imaginary time" is justified by the eigenform approach to the structure 
of time and the structure of the square root of minus one. 

As an example of the use of the Temporal Nexus, consider the expression x2 + y2 + z2 + t2, 
the square of the Euclidean distance of a point (x, y, z, t) from the origin in Euclidean four­
dimensional space. Now replace t by it, and find 

x2 + y2 + z2 + (it)2 = x2 + y2 + z2 _ t2, 

the squared distance in hyperbolic metric for special relativity. By replacing t by its process 
operator value it we make the transition to the physical mathematics of special relativity. 
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In this section we shall first apply this idea to Lorentz transformations, and then generalize it 
to other contexts. 

So, to work: We have 

(t- x, t + x] = (t, t] + (-x, x] = t(1, 1] + x(-1, 1]. 

Since (1, 1](a, b] = (1a, 1b] = [a, b] and (0, OJ[ a, b] = (0, 0], we shall write 

1 = (1,1] 

and 
0=(0,0]. 

Let 
. (T = (-1, 1]. 

a is a significant iterant that we shall refer to as a polarity. Note that 

aa = 1. 

Note also that 
(t-x,t+x] =t+xa. 

Thus the points of spacetime form an algebra analogous to the complex numbers whose elements 
are of the form t + xa with aa = 1 so that 

(t + xa)(t' + x'a) = tt' + xx' + (tx' + xt')a. 

In the case of the Lorentz transformation it is easy to see the elements of the form (k, k-1
] translate 

into elements of the form 

T(v) = [(1 + v)/)(1- v2), (1- v)/)(1 ~ v2)] = (k, k-1
]. 

Further analysis shows that vis the relative velocity of the two reference frames in the physical 
context. Multiplication now yields the usual form of the Lorentz transform 

Tk(t + xa) = T(v)(t+ xa) 

= (1/ )(1- v2) - va/ )(1 - v2))(t + xa) 

= (t- xv)/)(1- v2 ) + (x- vt)a/)(1- v2 ) 

=t'+x'a. 

The algebra that underlies this iterant presentation of special relativity is a relative of the 
complex numbers with a special element a of square one rather than minus one (i2 = -1 in the 
complex numbers). 
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7 The Wave Function in Quantum Mechanics and The Square 
Root of Minus One 

One can regard a wave function such as '1/J(x, t) = exp(i(kx - wt)) as containing a micro­
oscillatory system with the special synchronizations of the iterant view i = [+ 1, -1]71 . It is these 
synchronizations that make the big eigenform of the exponential work correctly with respect to 
differentiation, allowing it to create the appearance of rotational behaviour, wave behaviour and 
the semblance of the continuum. In other words, we are suggesting that one can take a temporal 
view of the well-known equation of Euler: 

e;o = cos(O) + isin(O) 

by regarding the i in this equation as aniterant, as a discrete oscillation between -1 and+ 1. One 
can blend the classical geometrical view of the complex numbers with the iterant view by thinking 
of a point that orbits the origin of the complex plane, intersecting the real axis periodically and 
producing, in the real axis, a periodic oscillation in relation to its orbital movement in the two 
dimensional space. The special synchronization is the algebra of the time shift embodied in 

7171 = 1 

and 
[a, b]71 = 71[b, a] 

that makes the algebra of i = [1, -1]71 imply that i 2 = -1. This interpretation does not change 
the formalism of these complex-valued functions, but it does change one's point of view and we 
now show how the properties of i as a discrete dynamical systerm are found in any such system. 

7.1 Time Series and Discrete Physics 

We have just reformulated the complex numbers and expanded the context of matrix algebra to an 
interpretation of i as an oscillatory process and matrix elements as combined spatial and temporal 
oscillatory processes (in the sense that [a, b] is not affected in its order by a time step, while [a, b]71 
includes the time dynamic in its interactive capability, and 2 x 2 matrix algebra is the algebra of 
iterant views [a, b] + [c, d]17). 

We now consider elementary discrete physics in one dimension. Consider a time series of 
positions 

x(t) : t = 0, D.t, 2D.t, 3D.t, · · · . 

We can define the velocity v(t) by the formula 

v(t) = (x(t + D.t)- x(t))/ D.t = Dx(t) 

where D denotes this discrete derivative. In order to obtain v(t) we need at least one tick D.t of 
the discrete clock. Just as in the iterant algebra, we need a time-shift operator to handle the fact 
that once we have observed v(t), the time has moved up by one tick. 
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!_ -------

We adjust the discrete derivative. We shall add an operator J that in this context accomplishes 
the time shift: 

x(t)J = Jx(t + ~t). 
We then redefine the derivative to include this shift: 

Dx(t) = J(x(t+ ~t)- x(t))/ 6.t. 

This readjustment of the derivative rewrites it so that the temporal properties of successive obser­
vations are handled automatically. 

Discrete observations do not commute. Let A and B denote quantities that we wish to observe 
in the discrete system. Let AB denote the result of first observing B and then observing A. The 
result of this definition is that a successive observation of the form x(Dx) is distinct from an 
observation of the form (Dx)x. In the first case, we first observe the velocity at timet, and then 
xis measured at t + 6.t. In the second case, we measure x at t and then measure the velocity. 

We measure the difference between these two results by taking a commutator 

[A,B] =AB-BA 

and we get the following computations where we write ~x = x(t + ~t) - x(t). 

x(Dx) = x(t)J(x(t + ~t)- x(t)) = Jx(t + ~t)(x(t + ~t)- x(t)). 

(Dx)x = J(x(t + ~t) - x(t))x(t). 

[x,Dx] = x(Dx)- (Dx)x = (Jj~t)(x(t + ~t)- x(t)) 2 = J(~x)2 j~t 

This final result is worth recording: 

[x,Dx] = J(~x)2 /~t. 

From this result we see that the commutator of x andDx will be constant if (6.x)2 / 6.t = K is a 
constant. For a given time-step, this means that 

so that 

~x = ±y'(K~t) 

This is a Brownian process with diffusion constant equal to K. 

Thus we arrive at the result that any discrete process viewed in this framework of discrete 
observation has the basic commutator 

[x,Dx] = J(~x)2/6.t, 
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generalizing a Brownian process and containing the factor (box)2 /bot that corresponds to the 
classical diffusion constant. It is worth noting that the adjusment that we have made to the 
discrete derivative makes it into a commutator as follows: 

Dx(t) = J(x(t +bot)- x(t))/ bot= (x(t)J- Jx(t))bot = [x(t), J]/ bot. 

By replacing discrete derivatives by commutators we can express discrete physics in many vari­
ables in a context of non-commutative algebra. See [14, 15, 16, 17, 18, 19, 20, 22, 21] for more 
on this point of view. 

We now use the temporal nexus (the square root of minus- one as a clock) and rewrite these 
commutators to match quantum mechanics. 

7.2 Simplicity and the Heisenberg Commutator 

Finally, we arrive at the simplest place. Time and the square root of minus one are inseparable 
in the temporal nexus. The square root of minus one is a symbol and algebraic operator for the 
simplest oscillatory process. As a symbolic form, i is an eigenform satisfying the equation 

i = -1/i. 

One does not have an increment of time all alone as in classical t. One has it, a combination of 
an interval and the elemental dynamic that is time. With this understanding, we can return to the 
commutator for a discrete process and use it for the temporal increment. 

We found that discrete observation led to the commutator equation 

[x,Dx] = J(box) 2 /bot 

which we will simplify to 

taking q for the position x and pjm for velocity, the time derivative of position and ignoring the 
time shifting operator on the right hand side of the equation. 

Understanding that bot should be replaced byibot, and that, by comparison with the physics 
of a process at the Planck scale one can take 

we have 
[q,pjm] = (box)2 /ibot = -ih/m, 

whence 
[p,q] = ih, 

and we have arrived at Heisenberg's fundamental relatiionship between position and momentum. 
This mode of arrival is predicated on the recognition that only it represents a true interval of 
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time. In the notion of time there is an inherent clock or an inherent shift of phase that is making 
a synchrony in our ability to observe, a precise dynamic beneath the apparent dynamic of the 
observed process. Once this substitution is made, once the correct imaginary value is placed in 
the temporal circuit, the patterns of quantum mechanics appear. In this way, quantum mechanics 
can be seen to emerge from the discrete. 

The problem that we have examined in this section is the problem to understand the nature 
of quantum mechanics. In fact, we hope that the problem is seen to disappear the more we enter 
into the present viewpoint. A viewpoint is only on the periphery. The iterant from which the 
viewpoint emerges is in a superposition of indistinguishables, and can only be approached by 
varying the viewpoint until one is released from the particularities that a point of view contains. 

8 Clifford Algebra, Majorana Fermions and Braiding 

Recall fermion algebra. One has fermion annihiliation operators ¢ and their conjugate creation 
operators ¢t. One has ¢ 2 = 0 = (¢t)2· There is a fundamental commutation relation 

If you have more than one of them say¢ and rp, then they anti-commute: 

'1/Jrp= -1'1/J. 

The Majorana fermions c that satisfy ct = c so that they are their own anti-particles. There is a lot 
of interest in these as quasi-particles and they are related to braiding and to topological quantum 
computing. A group of researchers [9] claims, at this writing, to have found quasiparticle Majo­
rana fermions in edge effects in nano-wires. (A line of fermions could have a Majorana fermion 
happen non-locally from one end of the line to the other.) The Fibonacci model that we discuss is 
also based on Majorana particles, possibly related to collecctive electronic excitations. If P is a 
Majorana fermion particle, then P can interact with itself to either produce itself or to annihilate 
itself. This is the simple "fusion algebra" for this particle. One can write P 2 = P + 1 to denote 
the two possible self-interactions the particle P. The patterns of interaction and braiding of such 
a particle P give rise to the Fibonacci model. 

· Majoranas are related to standard fermions as follows: The algebra for Majoranas is c = ct 
and cc' = -c' c if c and c' are distinct Majorana fermions with 2 = 1 and cf2 = 1. One can make 
a standard fermion from two Majoranas via 

¢ = (c + ic')/2, 

¢t = (c- ic')/2. 

Similarly one can mathematically make two Majoranas from any single fermion. Now if you take 
a set of Majoranas 
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then there are natural braiding operators that act on the vector space with these Ck as the basis. 
The operators are mediated by algebra elements 

Then the braiding operators are 

Tk = (1 + Ck+!Ck)/../2, 

Tk1 = (1- Ck+!Ck)j../2. 

Tk : Span{ c1, c2, · · · , , c,} ---+Span{ c1, c2, · · · , , c,} 

via 

The braiding is simply: 
Tk(ck) = ck+I• 

Tk(Ck+I) = -Ck, 

and Tk is the identity otherwise. This gives a very nice unitary representaton of the Artin braid 
group and it deserves better understanding. See Figure 3 for an illustration of this braiding of 
Fermions in relation to the topology of a belt that connects them. The relationship with the belt is 
tied up with the fact that in quantum mechanics we must represent rotations of three dimensional 
space as unitary transformations. See [11] for more about this topological view of the physics 
of Fermions. In the Figure, we see that the belt does not know which of the two Fermions to 
annoint with the phase change, but the clever algebra above makes this decision. There is more 
to be done in this domain. 

It is worth noting that a triple of Majorana fermions say a, b, c gives rise to a representation 
of the quatemion group. This is a generalization of the well-known association of Pauli matrices 
and quaternions. We have a2 = ~ = c2 = 1 and they anticommute. Let I = ba, J = cb, K = ac. 
Then 

giving the quatemions. The operators 

braid one another: 

A= (1/../2)(1 +I) 

B = (1/../2)(1 + J) 

G = (1/../2)(1 + K) 

ABA= BAB, BGB = GBG, AGA =GAG. 

This is a special case of the braid group representation described above for an arbitrary list of 
Majorana fermions. These braiding operators are entangling and so can be used for universal 
quantum computation, but they give only partial topological quantum computation due to the 
interaction with single qubit operators not generated by them. 
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T(x) ~ y 
T(y)~-x 

Figure 3: Braiding Action on a Pair of Fermions 

Recall that in discussing the beginning of iterants, we introduce a temporal shift operator TJ 
such that 

[a, b]TJ = TJ[b, a] 

and 

TJTJ = 1 

for any iterant [a, b], so that concatenated observations can include a time step of one-half period 
of the process 

-- -abababab---. 

We combine iterant views term-by-term as in 

[a, b][c, dJ = [ac, bd]. 

We now define i by the equation 
i = [1, -1]TJ-

This makes i both a value and an operator that takes into account a step in time. 

We calculate 

ii = [1, -1]TJ[1, -1]TJ = [1, -1][-1, 1]TJTJ = [-1, -1] = -1. 

Thus we have constructed a square root of minus one by using an iterant viewpoint. In this view 
i represents a discrete oscillating temporal process and it is an eigenform for T(x) = -1/x, 
participating in the algebraic structure of the complex numbers. In fact the corresponding algebra 
structure of linear combinations [a, b] + [c, dJTJ is isomorphic with 2 x 2 matrix algebra and iterants 
can be used to construct n x n matrix algebra, as we have already discussed. 
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Now we can make contact with the algebra of the Majorana fermions. Let e = [1, -1]. Then 
we have e2 = [1, 1] = 1 and e7J = [1, -1]17 = [-1, 1]17 = -e7]. Thus we have 

172 = 1, 

and 
e17 = -17e. 

We can regard e and 17 as a fundamental pair of Majorana fermions. 

Note how the development of the algebra works at this point. We have that 

and so regard this as a natural construction of the square root of minus one in terms of the phase 
synchronization of the clock that is the iteration of the reentering mark. Once we have the square 
root of minus one it is natural to introduce another one and call this one i, letting it commute with 
the other operators. Then we have the (ie17)2 = + 1 and so we have a triple ofMajoranafermions: 

a= e, b = 7], c = ie17 

and we can construct the quaternions 

I = ba = 7Je, J = cb = ie, K = ac = iT]. 

With the quaternions in place, we have the braiding operators 

1 1 1 
A= vf2(1+I),B= vf2(1+J),C= vf2(1+K), 

and can continue as we did above. 

9 Laws of Form 

This section is a version of a corresponding section in our paper [23]. Here we discuss a for­
malism due the G. Spencer-Brown [1] that is often called the "calculus of indications". This 
calculus is a study of mathematical foundations with a topological notation based on one symbol, 
the mark: ,. 
This single symbol represents a distinction between its own inside and outside. As is evideht 
from Fgure 4, the mark is regarded as a shorthand for a rectangle drawn in the plane and dividing 
the plane into the regions inside and outside the rectangle. 
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Figure 4: Inside and Outside 

The reason we introduce this notation is that in the calculus of indications the mark can 
interact with itself in two possible ways. The resulting formalism becomes a version of Boolean 
arithmetic, but fundamentally simpler than the usual Boolean arithmetic of 0 and 1 with its two 
binary operations and one unary operation (negation). In the calculus of indications one takes 
a step in the direction of simplicity, and also a step in the direction of physics. The patterns of 
this mark and its self-interaction match those of a Majoranafermion as discussed in the previous 
section. A Majorana fermion is a particle that is its own anti-particle. [7]. We will later see, in 
this paper, that by adding braiding to the calculus of indications we arrive at the Fibonacci model, 
that can in principle support quantum computing. 

In the previous section we described Majorana fermions in terms of their algebra of creation 
and annihilation operators. Here we describe the particle directly in terms of its interactions. 
This is part of a general scheme called "fusion rules" [8] that can be applied to discrete particle 
interacations. A fusion rule represents all of the different particle interactions in the form of 
a set of equations. The bare bones of the Majorana fermion consist in a particle P such that 
P can interact with itself to produce a neutral particle * or produce itself P. Thus the possible 
interactions are 

pp--> * 
and 

PP--> P. 

This is the bare minimum that we shall need. The fusion rule is 

P 2 = 1 +P. 

This represents the fact that P can interact with itself to produce the neutral particle (represented 
as 1 in the fusion rule) or itself (represented by Pin the fusion rule) .. 

Is there a linguistic particle that is its own anti-particle? Certainly we have 
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Figure 5: Boxes and Marks 

for any proposition Q (in Boolean logic). And so we might write 

where * is a neutral linguistic particle, an identity operator so that 

for any proposition Q. But in the normal use of negation there is no way that the negation sign 
combines with itself to produce itself. This appears to ruin the analogy between negation and 
the Majorana fermion. Remarkably, the calculus of indications provides a context in which we 
can say exactly that a certain logical particle, the mark, can act as negation and can interact with 
itself to produce itself. 

In the calculus of indications patterns of non-intersecting marks (i.e. non-intersecting rectan­
gles) are called expressions. For example in Figure 5 we see how patterns of boxes correspond to 
patterns of marks. 

In Figure 5, we have illustrated both the rectangle and the marked version of the expression. 
In an expression you can say definitively of any two marks whether one is or is not inside the 
other. The relationship between two marks is either that one is inside the other, or that neither is 
inside the other. These two conditions correspond to the two elementary expressions shown in 
Figure 6. 

The mathematics in Laws of Form begins with two laws of transformation about these two 
basic expressions. Symbolically, these laws are: 

1. Calling: 
,,=, 

2. Crossing: 
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Figure 6: Translation between Boxes and Marks 

The equals sign denotes a replacement step that can be performed on instances of these patterns 
(two empty marks that are adjacent or one mark surrounding an empty mark). In the first of 
these equations two adjacent marks condense to a single mark, or a single mark expands to form 
two adjacent marks. In the second equation two marks, one inside the other, disappear to form 
the unmarked state indicated by nothing at all. That is, two nested marks can be replaced by 
an empty word in this formal system. Alternatively, the unmarked state can be replaced by two 
nested marks. These equations give rise to a natural calculus, and the mathematics can begin. 
For example, any expression can be reduced uniquely to either the marked or the unmarked state. 
The he following example illustrates the method: 

,,,,1,r= ~~~~r= ~~r 
= ---=J[l = I . 

The general method for reduction is to locate marks that are at the deepest places in the expression 
(depth is defined by counting the number of inward crossings of boundaries needed to reach the 
given mark). Such a deepest mark must be empty and it is either surrounded by another mark, or 
it is adjacent to an empty mark. In either case a reduction can be performed by either calling or 
crossing. 

Laws of Form begins with the following statement. "We take as given the idea of a distinction 
and the idea of an indication, and that it is not possible to make an indication without drawing a 
distinction. We take therefore the form of distinction for the form." Then the author makes the 
following two statements (laws): 

1. The value of a call made again is the value of the call. 

2. The value of a crossing made again is not the value of the crossing. 

The two symbolic equations above correspond to these statements. First examine the law of 
calling. It says that the value of a repeated name is the value of the name. In the equation 

,,=, 
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one can view either mark as the name of the state indicated by the outside of the other mark. In 
the other equation 

---=Jl = 
the state indicated by the outside of a mark is the state obtained by crossing from the state in­
dicated on the inside of the mark. Since the marked state is indicated on the inside, the outside 
must indicate the unmarked state. The Law of Crossing indicates how opposite forms can fit into 
one another and vanish into nothing, or how nothing can produce opposite and distinct forms that 
fit one another, hand in glove. The same interpretation yields the equation 

where the left-hand side is seen as an instruction to cross from the unmarked state, and the right 
hand side is seen as an indicator of the marked state. The mark has a double carry of meaning. It 
can be seen as an operator, transforming the state on its inside to a different state on its outside, 
and it can be seen as the name of the marked state. That combination of meanings is compatible 
in this interpretation. 

From the calculus of indications, one moves to algebra. Thus 

stands for the two possibilities 

In all cases we have 

~I= I+------> A=-, 

II = +------> A = 

All= A. 

By the time we articulate the algebra, the mark can take the role of a unary operator 

A_____, J\l. 
But it retains its role as an element in the algebra. Thus begins algebra with respect to this non­
numerical arithmetic of forms. The primary algebra that emerges is a subtle precursor to Boolean 
algebra. One can translate back and forth between elementary logic and primary algebra: 

1. I +------> T 

2. ~ +------> F 

3. J\l +------>"-' A 

4. AB +------> A V B 
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5. 1\lBll <----->A!\ B 

6. 1\]B <-----> A =:- B 

The calculus of indications and the primary algebra form an efficient system for working with 
basic symbolic logic. 

By reformulating basic symbolic logic in terms of the calculus of indications, we have a 
ground in which negation is represented by the mark and the mark is also interpreted as a value 
(a truth value for logic) and these two intepretations are compatible with one another in the for­
malism. The key to this compatibility is the choice to represent the value "false" by a literally 
unmarked state in the notational plane. With this the empty mark (a mark with nothing on its in­
side) can be interpreted as the negation of "false" and hence represents "true". The mark interacts 
with itself to produce itself (calling) and the mark interacts with itself to produce nothing (cross­
ing). We have expanded the conceptual domain of negation so that it satisfies the mathematical 
pattern of an abstract Majorana fermion. 

Another way to indicate these two interactions symbolically is to use a box,for the marked 
state and a blank space for the unmarked state. Then one has two modes of interaction of a box 
with itself: 

1. Adjacency: 0 0 

and 

2. Nesting: 1 0 I· 

With this convention we take the adjacency interaction to yield a single box, and the nesting 
interaction to produce nothing: 

oo=o 

lol= 
We take the notational opportunity to denote nothing by an asterisk (*). The syntatical rules for 
operating the asterisk are Thus the asterisk is a stand-in for no mark at all and it can be erased or 
placed wherever it is convenient to do so. Thus 

lol=*· 
At this point the reader can appreciate what has been done if he returns to the usual form of 

symbolic logic. In that form we that 
rvrvX =X 

for all logical objects (propositions or elements of the logical algebra) X. We can summarize this 
by writing 
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as a symbolic statement that is outside the logical formalism. Furthermore, one is committed to 
the interpretation of negation as an operator and not as an operand. The calculus of indications 
provides a formalism where the mark (the analog of negation in that domain) is both a value and 
an object, and so can act on itself in more than one way. 

The M~orana particle is its own anti-particle. It is exactly at this point that physics meets log­
ical epistemology. Negation as logical entity is its own anti-particle. Wittgenstein says (Tractatus 
[27] 4.0621) "· · · the sign 'rv' corresponds to nothing in reality." And he goes on to say (Tracta­
tus 5.511)" How can all-embracing logic which mirrors the world use such special catches and 
manipulations? Only because all these are connected into an infinitely fine network, the great 
mirror." For Wittgenstein in the Tractatus, the negation sign is part of the mirror making it pos­
sible for thought to reflect reality through combinations of signs. These remarks of Wittgenstein 
are part of his early picture theory of the relationship of formalism and the world. In our view, 
the world and the formalism we use to represent the world are not separate. The observer and the 
mark are (formally) identical. A path is opened between logic and physics. 

The visual iconics that create via the boxes of half-boxes of the calculus of indications a 
model for a logical Majorana fermion can also be seen in terms of cobordisms of surfaces. View 
Figure 7. There the boxes have become circles and the interactions of the circles have been 
displayed as evolutions in an extra dimension, tracing out surfaces in three dimensions. The 
condensation of two circles to one is a simple cobordism betweem two circles and a single circle. 
The cancellation of two circles that are concentric can be seen as the right-hand lower cobordism 
in this figure with a level having a continuum of critical points where the two circles cancel. A 
simpler cobordism is illustrated above on the right where the two circles are not concentric, but 
nevertheless are cobordant to the empty circle. Another way of putting this is that two topological 
closed strings can interact by cobordism to produce a single string or to cancel one another. Thus 
a simple circle can be a topological model for a Majorana fermion. 

In [23, 24] we detail how the Fibonacci model for anyonic quantum computing can be con­
structed by using a version of the two-stranded bracket polynomial and a generalization of Pen­
rose spin networks. This is a fragment of the Temperly-Lieb recoupling theory [12]. 

9.1 The Square Root of Minus One Revisited 

So far we have seen that the mark can represent the fusion rules for a Majorana fermion since 
it can interact with itself to produce either itself or nothing. But we have not yet seen the anti­
commuting fermion algebra emerge from this context of making a distinction. Remarkably, this 
algebra does emerge when one looks at the mark recursively. 

Consider the transformation 

F(X) =X]. 
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Figure 7: Calling, Crossing and Cobordism 

If we iterate it and take the limit we find 

G = F(F(F(F(· · · )))) = ... ~~~~ 

an infinite nest of marks satisfying the equation 

a= en. 
With G = F(G), I say that G is an eigenform for the transformation F. See Figure 8 for an 
illustration of this nesting with boxes and an arrow that points inside the reentering mark to 
indicate its appearance inside itself. If one thinks of the mark itself as a Boolean logical value, 
then extending the language to include the reentering mark G goes beyond the boolean. We will 
not detail here how this extension can be related to non-standard logics, but refer the reader to 
[12]. Taken at face value the reentering mark cannot be just marked or just unmarked, for by its 
very definition, if it is marked then it is unmarked and if it is unmarked then it is marked. In 
this sense the reentering mark has the form of a self-contradicting paradox. There is no paradox 
since we do not have to permanently assign it to either value. The simplest interpretation of the 
reentering mark is that it is temporal and that it represents an oscillation between markedness 
and unmarkedness. In numerical terms it is a discrete dynamical system oscillating between + 1 
(marked) and -1 (not marked). 

With the reentering mark in mind consider now the transformation on real numbers given by 

T(x) = -1/x. 

This has the fixed points i and -i, the complex numbers whose squares are negative unity. But 
lets take a point of view more directly associated with the analogy of the recursive mark. Begin 
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by starting with a simple periodic process that is associated directly with the classical attempt to 
solve fori as a solution to a quadratic equation. We take the point of view that solving x2 = ax+b 
is the same (when x =F 0) as solving 

x =a+b/x, 

and hence is a matter of finding a fixed point. In the case of i we have 

x2 = -1 

and so desire a fixed point 
x = -1/x. 

There are no real numbers that are fixed points for this operator and so we consider the oscillatory 
process generated by 

T(x) = -1/x. 

The fixed point would satisfy 
i = -1/i 

and multiplying, we get that 
ii = -1. 

On the other hand the iteration ofT yields 

1, T(1) = -1, T(T(1)) = +1, T(T(T(1))) = -1,+1, -1, +1, -1, · · · . 

The square root of minus one is a perfect example of an eigenform that occurs in a new and 
wider domain than the original context in which its recursive process arose. The process has no 
fixed point in the original domain. At this point we enter once again the domain of iterants and 
particularly the discussion of Section 6 where we see the square root of minus one as a clock. 

There is one more comment that is appropriate for this section. Recall that a pair of Majorana 
fermions can be assembled to form a single standard fermion. In our case we have the spatial 
and temporal iterant components e = [1, -1] and 7J with e7J = -7]e. We can regard e and 7J as a 
fundamental pair of Majorana fermions. This is a formal correspondence, but it is striking how 
this Marjorana fermion algebra emerges from an analysis of the recursive nature of the reentering 
mark, while the fusion algebra for the Majorana fermion emerges from the distinctive properties 
of the mark itself. We see how the seeds of the fermion algebra live in this extended logical 
context. 
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The corresponding standard fermion annihilation and creation operators are then given by the 
formulas below. 

1/J = (e + i'fJ)I2 

and 
1/;t = (e- i'fJ)I2. 

Since e represents a spatial view of the basic discrete oscillation and 'f) is the time-shift operator 
for this oscillation it is of interest to note that the standard fermion built by these two can be 
regarded as a quantum of spacetime, retrieved from the way that we decomposed the process 
into space and time. Since all this is initially built in relation to extending the Boolean logic 
of the mark to a non-boolean recursive context, there is further analysis needed of the relation 
of the physics and the logic. We have only begun the analysis here. The crux of the matter is 
that two dimensional physics depends upon a plane space in which a simple closed curve makes 
a distinction between inside and outside in order for the braiding and phases to be significant. 
This same property of distinction in the plane is what gives a plane space the linguistic power to 
represent language and logic. This correspondence in not an accident and deserves further study! 

10 The Dirac Equation and Majorana Fermions 

We now construct the Dirac equation. This may sound circular, in that the fermions arise from 
solving the Dirac equation, but in fact the algebra underlying this equation has the same properties 
as the creation and annihilation algebra for fermions, so it is by way of this algebra that we will 
come to the Dirac equation. If the speed of light is equal to 1 (by convention), then energy E, 
momentum p and mass m are related by the (Einstein) equation 

E2 =p2 +m2. 

Dirac constructed his equation by looking for an algebraic square root of p2 +m2 so that he could 
have a linear operator forE that would take the same role as the Hamiltonian in the Schroedinger 
equation. We will get to this operator by first taking the case where p is a scalar (we use one 
dimension of space and one dimension of time.). Let E = ap +(3m where a and f3 are elements 
of a a possibly non-commutative, associative algebra. Then 

Hence we will satisfiy E 2 = r + m2 if a 2 = (32 = 1 and af3 + f3a = 0. This is our familiar 
Clifford algebra pattern and we can use the iterant algebra generated bye and 'f) if we wish. Then, 
because the quantum operator for momentum is -WI ax and the operator for energy is W/ &t, we 
have the Dirac equation 

Wlf; I &t = -iaalf; I ax + f3m1/J. 

Let 
0 = Wl&t + iaalax- (3m 
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so that the Dirac equation takes the form 

0'1/J(x, t) = 0. 

Now note that 
Oei(px-Et} = (E _ ap _ {3m)ei(p;r;-Et). 

We let 

D.= (E- ap- {3m) 

and let 

U = D.{3a = (E- ap- {3m){3a = {3aE + {3p- am, 

then 

This nilpotent element leads to a (plane wave) solution to the Dirac equation as follows: We have 
shown that 

for '1/J = ei(px-Et). It then follows that 

from which it follows that 

'1/J = {3aU ei(px-Et) 

is a (plane wave) solution to the Dirac equation. 

In fact, this calculation suggests that we should multiply the operator 0 by {3a on the right, 
obtaining the operator 

V = 0{3a = i{3a8/8t + i{38j8x- am, 

and the equivalent Dirac equation 

V'I/J=O. 

In fact for the specific '1/J above we will now have V(U ei(p;r;-Et)) = U2 ei(px-Et) = 0. This idea 
of reconfiguring the Dirac equation in relation to nilpotent algebra elements U is due to Peter 
Rowlands [26]. Rowlands does this in the context of quaternion algebra. Note that the solution 
to the Dirac equation that we have found is expressed in Clifford algebra or iterant algebra form. 
It can be articulated into specific vector solutions by using an iterant or matrix representation of 
the algebra. 
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We see that U = {3aE + {3p - am with U2 = 0 is really the essence of this plane wave 
solution to the Dirac equation. This means that a natural non-commutative algebra arises directly 
and can be regarded as the essential information in a Fermion. It is natural to compare this algebra 
structure with algebra of creation and annihilation operators that occur in quantum field theory. 
to this end, let 

ut = a{3E + ap - {3m.. 

Here we regard ut as a formal counterpart to complex conjugation, since in the split quaternion 
algebra we have not yet constructed commuting square roots of negative one. We then find that 
with 

A= u + ut = (a+ f3)(p- m.) 

and 
B = U- ut = 2{3aE+ ({3- a)(p -m.) 

that 

and 
[ iB ]2 = 1 
J2(p+m) , 

with i a commuting square root of negative one, giving the underlying Majorana Fermion opera­
tors for our Dirac Fermion. The operators U and ut satisfy the usual commutation relations for 
the annihilation and creation operators for a Fermion. 

It is worth noting how the Pythgorean relationship E 2 = p2 + m.2 interacts here with the 
Clifford algebra of a and {3. We have 

with 

This implies that 

ut = pa + m./3 + a{3E 

U = p{3 + m.a + {3aE 

(ut)2 = u2 = o, 

u + ut = (p + m.)(a + {3), 

U- ut = (p- m.)(a- {3) + 2Ea{3. 

(U + ut? = 2(p + m.)2 

(U- ut)2 = 2(p- m)2 - 4E2 = 2[p2 + m2 - 2pm- 2p2 - 2m2] = -2(p + m)2. 

From this we easily deduce that 

and this can be normalized to equal 1. 
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10.1 Another version of U and ut 
We start with 'ljJ = ei(px-Et) and the operators 

and 

so that 

and 

The Dirac operator is 

E = i8/8t 

p= -i8/8x 

E'ljJ = E'if; 

pl/J = znl;. 

and the modified Dirac operator is 

'D = 0(3a = (3aE + (3p- am, 

so that 
'D'IjJ = (f3aE + (3p- am)'if; = U'if;. 

If we let 

(reversing time), then we have 

V;fi = (-(3aE + (3p - am )'if; = ut ;j;, 

giving a definition of ut corresponding to the anti-particle for U'if;. 

We have 

and 

Note that here we have 

and 

We have that 

U = (3aE + (3p - am 

ut = -(3aE + j3p- am 

(U- ut)2 = -(2{3aE)2 = -4£2. 

u2 = (Ut)2 = 0 
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and 
uut + utu = 4E2

• 

Thus we have a direct appearance of the Fermion algebra corresponding to the Fermion plane 
wave solutions to the Dirac equation. Furthermore, the decomposition of Uand ut into the cor­
responding Majorana Fermion operators corresponds to E 2 = p2 + m 2

• Normalizing by dividing 
by 2E we have 

A= (f3p+ am)/E 

and 
B = if3a. 

so that 
A2 =B2 = 1 

and 
AB+BA=O. 

then 
U =(A+ Bi)E 

and 
ut = (A- Bi)E, 

showing how the Fermion operators are expressed in terms of the simpler Clifford algebra of 
Majorana operators (split quaternions once again). 

10.2 Writing in the Full Dirac Algebra 

We have written the Dirac equation so far in one dimension of space and one dimension of 
time. We give here a way to boost the formalism directly to three dimensions of space. We 
take an independent Clifford algebra generated by IT I, lT2 , 1T3 with lTl = 1 fori = 1, 2, 3 and 
lT;lTj = -lTjlT; for i f j. Now assume that a and f3 as we have used them above generate 
an independent Clifford algebra that commutes with the algebra of the IT;. Replace the scalar 
momentum p by a 3-vector momentump = (pl,P2,P3) and let p • lT = P11T1 + P21T2 + p31T3. We 
replace a;ax with \l = (ojoxl, a;ax2, a;ax2) and opfox with \l• p. 

We then have the following form of the Dirac equation. 

io1jJ/at = -ia\l •lT'l/; + f3ml/J. 

Let 
0 = iO/Ot + ia\l • lT- (3m 

so that the Dirac equation takes the form 

Olf;(x, t) = 0. 

102 



In analogy to our previous discussion we let 

'1/J(x, t) = ei(p•x-Et) 

and construct solutions by first applying the Dirac operator to this '1/J. The two Clifford algebras 
interact to generalize directly the nilpotent solutions and Fermion algebra that we have detailed 
for one spatial dimension to this three dimensional case. To this purpose the modified Dirac 
operator is 

V = if3a8jat + (3\l • O"- am. 

And we have that 

V'I/J = U'I/J 
where 

U = (JaE + (Jp • O" - am. 

We have that U2 = 0 and U¢ is a solution to the modified Dirac Equation, just as before. And just 
as before, we can articulate the structure of the Fermion operators and locate the corresponding 
Majorana Fermion operators. We leave these details to the reader. 

10.3 Majorana Fermions at Last 

There is more to do. We will end with a brief discussion making Dirac algebra distinct from the 
one generated by a, (3, 0"1 , 0"2 , 0"3 to obtain an equation that can have real solutions. This was the 
strategy that Majorana [7] followed to construct his Majorana Fermions. A real equation can have 
solutions that are invariant under complex conjugation and so can correspond to particles that are 
their own anti-particles. We will describe this Majorana algebra in terms of the split quaternions 
E and 'fl· For convenience we use the matrix representation given below. The reader of this paper 
can substitute the corresponding iterants. 

E = ( ~l ~ ) , 'f/ = ( ~ ~ ) · 

Let ii and i) generate another, independent algebra of split quaternions, commuting with the first 
algebra generated by E and 'f/· Then a totally real Majorana Dirac equation can be written as 
follows: 

(8/at + i1Tf8/8x + E8/8y + E'f/8/8z- iii)Tfm)'lj! = 0. 

To see that this is a correct Dirac equation, note that 

(Here the "hats" denote the quantum differential operators corresponding to the energy and mo­
mentum.) will satisfy 
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if the algebra generated by a,, ay, az, fJ has each generator of square one and each distinct pair 
of generators anti-commuting. From there we obtain the general Dirac equation by replacing E 
by i8(&t, and p, with -i8(8x (and same for y, z). 

This is equivalent to 

(8/&t + a,8f8x + ay8/8y + az8f8y + ifJm)'l/! = 0. 

Thus, here we take 
a, = fiTJ, ay = E, az = ETJ, fJ = iiijTJ, 

and observe that these elements satisfy the requirements for the Dirac algebra. Note how we have 
a significant interaction between the commuting square root of minus one (i) and the element iij 
of square minus one in the split quatemions. This brings us back to our original considerations 
about the source of the square root of minus one. Both viewpoints combine in the element 
fJ = 'iiiiTJ that makes this Majorana algebra work. Since the algebra appearing in the Majorana 
Dirac operator is constructed entirely from two commuting copies of the split quatemions, there 
is no appearance of the complex numbers, and when written out in 2 x 2 matrices we obtain 
coupled real differential equations to be solved. Clearly this ending is actually a beginning of a 
new study of Majorana Fermions. That will begin in a sequel to the present paper. 
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Abstract. Many attempts have been made to reduce the whole of physics 
to a single space- or space-time-like structure. However, it seems more 
likely that the true structure of physics, based on fermionic point-particles 
and their interactions, requires a combination of two vector spaces or a 
space and an antispace, which are dualto each other. 

Defining dual spaces 

All physical measurements are mediated via space. Measurements of 
time, mass and so on are equivalent to a pointer moving over a spatial 
scale, or counting movements over the same scale. Several past attempts 
to reduce all other physical parameters to a version of space. Descartes 
deftned matter in terms of extension and created a space which was filled 
with matter manifesting itself as spatial extension. Minkowski proclaimed 
that Einstein's special relativity meant the separate existences of space 
and time was henceforth abolished. Einstein then interpreted the 
gravitational effect of mass-energy as equivalent to a curvature in the 
Minkowski space-time. Following this, Kaluza-Klein theory incorporated 
electromagnetism by creating an additional ftfth dimension for the curved 
space-time. Currently, string theory defmes the whole Standard Model, 
based on four fundamental interactions, as a space-time constructed from 
ten dimensions. Point-like particles become 'strings', constructed from 1 
D of space and 1 D of time, existing in an 8-D substratum. 5 classes of 
string theory are known and it has been hypothesized that they can be 
related to each other by adding an extra dimension to the strings, so that 
they become 'membranes' with 2 D of space and 1 D time, again within 
an 8-D substratum, so requiring 11 D in all. 

Such theories have received a great deal of support, but are faced with 
major difficulties. Many different realisations of string and membrane 
theory are possible (perhaps as many as 1 050'1, so the chances of hitting 
on the 'correct' one by accident are impossibly remote. We also have to 
explain why the 'real' (observed) world seems to be based on a space 
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with just 3 D, and famously provides no experimental predictions, while 
the whole development, from ·special to general relativity, to Kaluza­
Klein, and then to string I membrane theory, seems to produce a fit with 
nature which is more awkward and less natural at each successive stage. 

There is, in fact, already a problem with making time a fourth 
dimension of space. This is not entirely compatible with quantum 
mechanics, where space is an observable, but time is not. The problem is 
not resolved by increasing the number of dimensions. The theories can be 
made to 'work' to some extent up to the Kaluza-Klein level, but the 
increasing awkwardness and complication seem to suggest that this is not 
theory at a truly fundamental level, where we would expect increasing 
simplification. 

There is, however, an alternative, which incorporates ideas such as 
symmetry, and, even more particularly, duality. The ultimate basis ofthis 
approach is a set of principles (long established in my own work), of 
which the most important is that Nature exhibits zero totality in all of its 
aspects, material and conceptual, and it does this via a fundamental 
principle of duality, which can be inferred, but not observed directly, 
from within the system. If space is the concept through which all physical 
observation is mediated, then we can only perceive its existence because 
a dual space, which cannot be observed, operates simultaneously in such 
a way that the sum total of all of 'Nature' is precisely zero, though this 
cannot be observed from within the system. 

The difficulties in describing Nature using a single space are overcome 
once we recognize that it has a dual partner, even though the dual space 
contains no new information. Equally significant is the fact that we can 
construct a model for physics without combining observed space with 
anything other than its dual, without going beyond 3 D, and without 
assuming distortion or curvature at a fundamental level. All the 
difficulties that arise with trying to construct a more and more 
complicated single space (in effect, a modem equivalent of epicycles) are 
overcome by merging it with its dual partner. 

Clifford algebra 

The only full description of a physical vector space that includes such 
as aspects as its ability to generate areas and volumes as well as lengths 
and directions is that of Clifford or geometrical algebra. The Clifford 
algebra of 3-dimensional space can be described by + and -versions of 8 
base units: 
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i 
ii 
i 
1 

j 
ij 

k 
ik 

vector 
bivector 
trivector 
scalar 

pseudovector 
pseudoscalar 

quatemion 

A bivector is the direct product of two orthogonal vector units, and a 
trivector the direct product of three orthogonal vector units. The vector 
units i, j, k are identical to the complexified quatemion units ii, ij, ik, and 
are isomorphic to the Pauli matrices ax, oy, oz. They follow the 
multiplication rules 

ij =-ji = ik 
jk =-kj =ii 
k . 'k .. I= -I = IJ 

i2 = j2 = k2 = 1 
ijk = i 

Also, two vectors a and b, made up of summations of the three unit 
values multiplied by arbitrary scalar coefficients, have a full product 
which is a combination of the ordinary vector and scalar products: 

ab = a.b + ia x b 

It is notable that, while 1 is the fourth component of the quatemion 
system, with ijk = -1, the quantity that plays that role in the vector system 
is i. If we multiply the quatemion units i,j, i, 1 by ito create a 4-vector 
system, we obtain i, j, i, i. 

We are now proposing that the reason why all of physics is mediated 
through the concept of 3-D vector space alone is that this space is 
supplemented by a dual construct, commutative to itself, which contains 
no new information but which is necessary to obtain the fundamental 
totality zero condition which we believe applies to the natural world. 

Let us describe this dual vector space using + and - versions of the 
following symbols: 

I 
il 
i 
1 

J 
iJ 

K 
iK 

vector 
bivector 
trivector 
scalar 

pseudovector 
pseudoscalar 
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If the two spaces are commutative, then the full algebra combining 
them will be a tensor product, with 64 units which can be represented as 
+ and- versions of the following: 

i j k ii ij ik i 1 
I J K ii iJ iK 
ii iJ iK iii iiJ iiK 
ji jJ jK iji iji ijK 
ki kJ kK iki ikJ ikK 

The algebraic structure represented by these units is clearly a group of 
order 64, which can be shown to be isomorphic to the algebra of the Dirac 
equation, or r matrices, just as the algebra of a single vector space is 
recognisably that of the Pauli or s matrices. It is not difficult to show that 
all possible versions of the ymatrices can be derived from a commutative 
combination of two sets of s matrices, say o-1, o-2, 0""3 and Li. 1:2. L). 

We establish that the two spaces are dual by imposing the nilpotency 
condition. First, we identify the generators of the group. The mininial 
number is 5, and so the minimal number of units for describing physics in 
this way is also 5. All the combinations which include the eight base units 
1, i, i.j, k, i, j, k, have the same structure, typically represented by 

K iij ilk jJ 

Many variations on this exist, but without change to roverall pattern. 

The nilpotent condition 

The pattern distinguishes between the two sets of commuting vector 
units: one group (here, i, j, k) remains rotation-symmetric because each 
of the units is multiplied by the same algebraic object, the other (I, J, K) 
loses this symmetry because each of the units is multiplied by a quite 
different kind of algebraic object. As represented above, K is multiplied 
by a scalar unit, I by a bivector or pseudovector, and J by a pseudoscalar. 
The algebra is unchanged by multiplying the units by arbitrary scalar 
values, positive or negative. We represent them using the respective 
symbols E, Px, py, Pz. m. Incorporating these arbitrary scalar values, we 
can represent the 5 generators of our group formed from two commuting 
vector spaces by the expressions: 
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KE iJm 

We now need to fmd a condition which will connect the two spaces, 
ensuring that they are dual in the sense that each contains the same 
information. The algebra of vector spaces is constructed so that the 
squared value of any vector, combining summations of the scalar 
multiplications of the orthogonal components, defmes a scalar norm, 
which, in the case of unit values can be equated to 1. We can apply the 
same condition to our five generators, but this time establishing the norm 
as 0. So we require 

(KE + iDpx + iljpy + ilkpz + iJm) (KE + lliPx + iljpy + ilkpz + iJm) = 0 

which works out as 

This is the nilpotent condition: the bracketed object squares to zero. 
The zeroing ensures, as we can show, that the information in the two 
spaces represented by the respective units i, j, k and I, J, K is identical It 
also defmes, in principle, the meaning of a point in either of the two 
spaces as the norm 0 crossover between them. Mathematicians discuss 
points in ordinary 3-D space, but physically they have no meaning, as 
space is a nonconserved quantity whose units have no defmable identity 
because they have rotation and translation symmetry. In effect, we cannot 
identifY anything in a single space, but identification becomes possible if 
we have two spaces. 

But if nonconservation can be thought of as denying identification, 
then identification can be thought of as suggesting conservation. In effect, 
the units represented by the second space (1, J, K) become identifiable 
because they are associated with different algebraic objects, and so the 3-
dimensionalty of this second space is somehow structurable as a 
conserved dimensionality because of its rotation asymmetry. Gradually, 
we see that our two spaces are beginning to suggest a picture of physics 
as we know it. We have an emerging idea of two spaces, which, though 
containing the same information and though presumably symmetric at 
some very deep level, look very different to the physical observer because 
the creation of a system of 5 generators necessarily breaks a symmetry 
between the way we perceive them. 
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Essentially, from our position within the system, we have been forced 
to 'privilege' one space over the other, to maintain the symmetry of one 
while losing that of the other. 1bis can be seen as similar to the way in 
which our most primitive form of numbering, binary arithmetic, 
'privileges' 1 over -1, making them dual in summing to 0, but appearing 
very different in the way they are perceived from within a system defmed 
by unit 1. 

A physical realization of two spaces 

We have not yet justified, on fundamental grounds, why we use space 
at all and where the other space might come from. Clifford algebra, 
significantly, has 3 subalgebras, which we can describe as scalar, 
complex and quaternion, or scalar, trivector and bivector. Each of these 
is an algebra in its own right, and it is difficult to see why only the full 
Clifford algebra should have a physical meaning. In fact, previous work 
suggests that all of the subalgebras have physical meanings on the same 
level as Clifford algebra, and that they represent the respective physical 
concepts of mass, time and charge. That is, besides the vector algebra of 
space, we have three independent algebras which have a physical 
representation on the same level as space. 

If we combine these the three physical concepts as representing 
everything that is excluded from space as represented by i, j, k, then the 
total structure is equivalent to a single vector space represented by the 
units I, J, K, but without anything which directly corresponds to these 
units: 

charge 
time 
mass 

il iJ iK bivector pseudovector quaternion 
i trivector pseudoscalar 
1 scalar 

So, we are unable to observe the space represented by I, J, K, because 
it has no single physical representation. It is, instead, a mathematical 
combination of three physical quantities which are not part of the space 
represented by i, j, k. Our second space has physical meaning, but cannot 
be accessed as a physical quantity. It is conveniently called 'vacuum 
space', as opposed to 'real space'. It can also be described as 'antispace' 
because it combines with real space to produce zero totality. Also, to 
emphasize the independence of charge from the 'space' in which it is 
incorporated, it is convenient to represent it directly using quaternion, 
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rather than bivector, notation, so the components of 'vacuum space' now 
become: 

charge 
time 
mass 

i j 
i 
1 

k bivector pseudovector quatemion 
trivector pseudoscalar 
scalar 

We can now link the generation of space as a Clifford algebra and 
those of mass, time and charge as independent subalgebras, with the 
evolutionary universal rewrite process we previously defmed for the 
whole sequence from zero totality (Rowlands and Diaz, 2002, Diaz and 
Rowlands, 2005, Rowlands, 2007), and also with the D 2 group symmetry 
which can be derived from the most fundamental properties of mass, 
time, charge and space, which also represent a conceptual zero totality. 

mass real (norm + 1) 
time imaginary (norm -1) 
charge imaginary (norm -1) 
space real (norm + 1) 

commutative conserved 
commutative nonconserved 
anticommutative (3D) conserved 
anticommutative (3D) nonconserved 

The real/ imaginary and commutative I anticommutative properties are 
directly derived from the algebraic units associated with the respective 
parameters. The conserved and nonconserved natures of charge and space 
are related to the way they are combined in the 5 group generators 
creating the norm 0 overall structure, while the corresponding natures of 
mass and time are related to the fact that quantities with their algebraic 
characteristics are needed to complete the quaternion and vector 
properties of charge and space. 

While the rewrite structure shows that the evolutionary process 
creating mass, time, charge and space can be continued to infmity, the 
creation of nilpotent structures zeroing all higher terms and the perfect 
group symmetry, allowing a complete cancellation, ensure that all the 
higher order structures can be incorporated in Clifford algebra at the first 
level. The creation of a norm 0 state out of our double Clifford algebra 
can be interpreted as the creation of the physical objects known as point­
particles or fermions. No other fundamental structures are known to be 
needed for physics, bosons being expressions of fermion interactions. 

In addition, a fermion interpretation of the Wheeler one-electron theory 
of the universe allows us to conceive a representation of the universe as a 
single localised fermion interacting with its nonlocal vacuum. Our dual 
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space structure in which the basic llllit is a point-singularity incorporating 
some components that are con8erved and others that are nonconserved 
provides an opportunity for explaining the whole of physics using this 
model. We begin by generating a nilpotent version of quantwn 
mechanics. Here, it is convenient to rewrite the nilpotent condition using 
quatemions for the charges: 

(ikE+ iipx + ijpy + ikpz + jm) (ikE + iipx + ijpy + i'l<pz + jm) = 0 

We can also collect together the vector tenns, so that 

(ikE+ ip + jm) (ikE+ ip + jm) = 0. 

Finally, we can use the identifications we have made for the various 
algebraic llllits of mass, time, charge and space, to identify the composite 
quantities in this equation as energy, momentum and rest mass, and to 
recognise that the bracketed object (ikE+ ip + jm) represents a conseiVed 
quantity, withE, p and m being derived by combining the conserved 
charge llllits with those, respectively of time, space and mass. 

Following this, we approach quantum mechanics as the most exact way 
of describing the nonconservation of space and time in relation to the 
conservation of (ikE+ ip + jm). The most complete possible variation in 
space and time is defmed by a phase factor which associates E with time 
and p with space. We then use the differentials a I at and V to recover 
(ikE + ip + jm) from the phase factor. For a free particle, the most 
complete set of variations in space and time is given by e-t(Et-p.r), and the 
expression which will recover (ikE+ ip + jm) using this as a phase factor 
is (- ka I at - ii'V + jm ). So we construct the nilpotent quantwn 
mechanical equation for a free particle in the form 

(-ka I at- ii'V + jm) (ikE+ ip + jm) e-I(Et-p.r) = 0. 

Including all possible sign variations of E and p, we obtain 

(+ ka I at+ ii\1 + jm) (±ikE+ ip + jm) e-t(Et-p.r) = 0 

which is equivalent to a nilpotent Dirac equation of the fonn 

(+ ka I at+ ii'V + jm)'!f= 0. 
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We can also express it in operator form 

(±ikE± ip + jm) (±ikE± ip + jm) e-I(Er-p.r) = O, 

where the operators E and p become iO I ot and -i\1 as in the usual 
canonical quantization. 

A nilpotent wavefunction, say f//1, is automatically Pauli exclusive 
because it will form a zero combination state with an identical particle 
lf/t If/ L· In addition, if the universe is a totality zero state, then we can 
imagine that the creation of a fennion, specified by f//1, from absolutely 
nothing requires the simultaneous creation of the vacuum state, - lf/L, 
which would cancel it. In that case, the superposition of fermion and 
vacuum, lf/L - lf/1, and their combination state, - lf/L lf/L, will both be 
precisely 0. 

Now, the concept of Pauli exclusion applies to fennions in any state, 
and we can use this to extend nilpotent quantum mechanics in a new 
direction, by imagining that the operator 

(±ikE ±ip +jm) = (+ kol at+ iN+ jm) 

can be extended to include any number of field terms or covariant 
derivatives, so that E and p now become, for example, iO I ot + e ¢ + ... 
and -i\1 + eA + . . . . The same will also be true of external field terms 
defmed by expectation values, as with the Lamb shift, or in tenns of 
quantum fields. 

In this form, we don't even need an equation, just an operator of the 
form(± ikE± ip + jm) because the operator will uniquely determine the 
phase factor needed to produce a nilpotent amplitude. Rather than using a 
conventional form of the Dirac equation, we find the phase factor such 
that, using the defmed operator, 

(operator acting on phase factori = amplitude2 = 0. 

If the operator has a more complicated form than that of the free particle, 
the phase factor will, of course, be no longer a simple exponential but the 
amplitude will still be a nilpotent. 

A nilpotent operator, in effect, always splits the universe into two 
halves, a local part represented by the fennion, and a dual, nonlocal, 
vacuum part, which incorporates the rest of the universe. So we create a 
fermion in a particular state, including all its interacting potentials, and 
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then we have to construct the vacuum or 'rest of the universe' which 
enables the fermion to exist in that state. The fact that the fermion in any 
state needs to create the entire universe which makes it possible makes a 
Wheeler-type 'one fermion' theory of the universe a seriously interesting 
possibility. The fermion and the entire universe are then a dual pair, and 
so the structure of the universe can be thought of as equivalent to that of a 
single particle. Of course, this single fermion is necessarily an interacting 
one, constructing a 'space' in which the vacuum is not localised on itself. 

Another way of looking at this is to say that the fermion always exists 
in the two spaces from which it is constructed, real space and vacuum 
space, and the non-classical zitterbewgung motion, which Schrodinger 
found in the solution to the free-particle Dirac equation, represents the 
switching between these spaces which makes it possible to defme the 
fermion as creating a point singularity through the intersection of two 
spaces. 

We can here apply a reverse argument from topology. The creation of a 
particle singularity using its 'intersection' with a dual space can be seen 
as the creation of a multiply-connected space from a simply-connected 
space through the insertion of a topological singularity. 

simply-connected 
space 

multiply-connected 
space 

According to a well-known argument, parallel transporting a vector round 
a complete circuit in a multiply-connected space will produce a phase 
shift of .~ror 180° in the vector direction, whereas transporting it round a 
simply-connected space will not, and so, in the first case, the vector will 
be required to do a double circuit to return to its starting point. 
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This is exactly what happens with a spin lh fermion, which, as a point­
singularity, can be regarded as existing in its own multiply-connected 
space. We can interpret this as meaning that the fermion requires a double 
circuit because, just as in zitterbewegung, it spends only half of its time 
travelling in the real space of observation. 

Spin 

Spin lh is obtained quite easily from the nilpotent operator (ikE + ip + 
jm) by deflning a Hamiltonian specifled as H = -ik(ip + jm) = -ijp + iim, 
and a mathematical quantity cr = -1, which is a pseudovector of · 
magnitude -1. Then 

[cr, H] = [-1, -ij (ip1 + jp2 + kp3) + iim] = [-1, -ij(ip1 + jp2 + kp3)) 
= [-1, -ij (ip1 + jp2 + kp3) + iim] = [-1, -ij(ip1 + jp2 + kp3)] 
= 2ij (ijp2 + ikp3 + jip 1 + j P3 + kip1 + kjpz) 
= -2j (k(p2-Pt) + j(p1-P3) + i(p3-P2)) 
=-2j1 X p. 

IfL is an orbital angular momentum defmed by r x p, then 

But 
Hence 

[L,H] = [r x p, -ij (ip1 + jp2 + kp3) + iim] 
= [ r X p, -ij (ipl + jp2 + kp3)) 
= i [r, -ij (ipl + jp2 + kp3)] X P 

[r, -ij (ipl + jp2 + kp3)) = i1. 
[L,H] = 1 x p, 

and L + 0' I 2 is a constant of the motion, because 

[L + cr /2, H] = 0. 

Spin, in this derivation, emerges from the Clifford algebra aspect of the 
operator p, in effect because of the ia x b aspect of the full vector product 
ab = a. b + ia x b. 

If we use Clifford algebra or multivariate vectors, then p will 
incorporate spin. However, where ordinary vectors are used, e.g. with 
polar coordinates, an intrinsic spin is no longer structured into the 
formalism and an explicit spin term has to be introduced. Dirac has given 
a prescription for translating his equation into polar form. Here p acquires 
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an additional (imaginary) spin term, and we can easily adapt this to 
represent a polar transformation.ofthe multivariate vector operator: 

v ~ -+- 1"----" (a 1)± .J+¥7. 
ar r r 

and use this to defme a non-time varying nilpotent operator in polar 
coordinates: 

('kE .. .., ' ) (·kE ··(a I+ .j +¥7.) ' ) 1 -llv+pn ~ 1 -11 Or+;-' r +pn 

This will become significant when we consider cases involving spherical 
symmetry. 

Antisymmetric wavefunctions 

The nilpotent structure explains immediately why we have Pauli 
exclusion between fermions, but the conventional way of explaining this 
property leads us to a profound insight on the nature of the information 
available in quantum systems if we structure it in nilpotent form. This is 
by defming fermion wavefunctions to be antisymmetric, so that: 

In nilpotent terms, we write ( lj/1 fJ/1.- fJ/l.lf/1) as 

( ± ikE1 ± ip1 + jm1) ( ± ikE2 ± ip2 + jm2) 
- (± ikE2 ± ip2 + jm2) (± ikE1 ± ip1 + jm1) 

= 4p,p2 -4P2Pl = 8 ip, X P2=-8 i P2 X PI· 

This result is clearly antisymmetric, but it also has a quite astonishing 
consequence, for it requires any nilpotent waveft.mction to have a p 
vector, in real space, the one defmed by the axes i, j, k, at a different 
orientation to any other. 

The waveft.mctions of all nilpotent fermions then instantaneously 
correlate because the planes of their p vector directions must all intersect. 
At the same time, the nilpotent condition requires the E, p and m 
combinations to be unique, and we can visualize this as constituting a 
unique direction in vacuum space along a set of axes defmed by k, i, j or 
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K, I, J, with coordinates defmed by the values of E, p and m. The 
directions of the vectors in each space carry all the information available 
to a fennionic state, and so the information in the two spaces is totally 
dual, and is equivalent to the instantaneous direction of the spin in the 
real space. The total information determining the behaviour of a fermion 
and even of the entire universe is contained in a single spin direction. 

Conventionally, the Dirac wavefunction is a spinor, with the four 
components in (± ikE ± ip + jm) structured as a column vector, 
incorporating the 4 combinations of particle and antiparticle, and spin up 
and spin down. With ± E and ± p (or ± cr. p) representing these 
possibilities, the respective amplitudes can be identified as, say, 

(ikE+ ip + jm) 
(ikE- ip + jm) 
(-ikE+ ip + jm) 
(-ikE- ip + jm) 

fermion spin up 
fermion spin down 
antifermion spin down 
antifermion spin up 

each being multiplied by the same phase factor. The helicity or 
handedness ( CJ. p) is then determined by the ratio of the signs of E and p. 
So ip I ikE has the same helicity as (- ip) I (-ikE), but the opposite 
helicity to ip I (-ikE). The negative energy or antiparticle states in this 
formalism can also be seen to have the opposite time direction in their 
differential forms to the positive energy or particle states. 

The lead term in the column may be considered as defming the fermion 
type, and it will often be convenient to represent the entire 4-component 
structure by just this term. The remaining terms are then automatically 
derived by sign transformations, becoming equivalent to the lead term, 
subjected to the respective symmetry transformations, P, T and C, by pre­
and post-multiplication by the quaternion units defming what we have 
previously described as the vacuum space. 

Parity 
Time reversal 
Charge conjugation 

Clearly also: 

and 
as 

p 
T 
c 

i(ikE+ ip +jm) i= (ikE- ip + jm) 
k(ikE+ ip + jm)k= (-ikE+ ip + jm) 
-j (ikE+ ip + jm)j =(-ikE- ip + jm) 

CP=T PT=C CT=P 
TCP = CPT= identity 

k (-j (i (ikE+ ip + jm) i)j} k = -lfii (ikE+ ip + jm) ijk =(ikE+ ip + jm) 
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From these rules, it is cleat that charge conjugation is effectively 
defmed in terms of parity and time reversal, rather than as an independent 
operation. Tills is a consequence of the fact that the variation in space and 
time is the information that solely determines both the phase factor and 
the entire nature of the fermion state. 

Bosons 

The terms in the nilpotent 4-spinor, other than the lead term are the 
states into which it could transform without changing its E or p. They can 
be seen as vacuum 'reflections' of the real particle state, arising from 
vacuum operations that can be mathematically defmed. A fermion be 
imagined as forming a combination state with any of these vacuum 
'reflections'. In each of these cases, the combined state will form one of 
the three classes of bosons or boson-like objects, whose wavefunctions, 
summed up over 4 terms, yield products which are scalars: 

Spin 1 boson: 
(± ikE±ip + jm)( +ikE ±ip + jm) T 

Spin 0 boson: 
(±ikE± ip + jm)(+ ikE+ ip + jm) C 

Fermion-fermion combination (B-E condensate I Berry phase, etc.): 
(±ikE± ip + jm) (+ikE+ ip + jm) P 

A spin 1 boson can be massless, but a spin 0 boson cannot, as then ( ± ikE 
+ ip) ( + ikE + ip) immediately reduces to zero: hence Goldstone bosons 
must become Higgs bosons in the Higgs mechanism. 

Another consequence is that the fermion and antifermion cannot both 
be purely left-handed or both purely right-handed - or massless - and act 
via a weak interaction to produce a bosonic state. That is, a left-handed 
fermion (± ikE ± ip) cannot combine with a left-handed antifermion 
( + kE + ip ), via a weak interaction, to form a bosonic single state unless 
a nonzero mass term is introduced. Though the chirality is a direct 
consequence of the structure of the Dirac equation, even in the 
conventional formalism, it is seen here as an immediate consequence of 
the nilpotent structure. 

Versions of these bosons can also be imagined as being created and 
annihilated in the switching between a 'real fermion' and its vacuum 
states, in particular between the + and - energy states, or between real 
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and vacuum space (the switching between spin states occurring in real 
space if particles have nonzero rest mass). Since this is always occurring 
due to zitterbewegung, and the weak interaction, then we can consider 
weak sources (i.e. fermions) as necessarily having a dipole or multipole 
aspect. 

Because of the fundamental chirality of the weak interaction, we can 
also see fem1ions as characteristic of real space and antifem1ions of 
vacuum space. A particle which is a fem1ion in ordinary space acts for 
half its existence as an antifem1ion in vacuum space, in exactly the w~ 
that the 4-component Dirac spinor would suggest. There is no problem of 
an antisymmetry between matter and antimatter. There is the same 
amount of each. E, p, space, time and charge all cancel overall when we 
take both spaces into account. There is, in particular, a backward 
direction in time and a reverse causality which apply to nonlocal 
processes. The entire future of the universe could be said to be contained 
within the vacuum for any fermion, though this does not lead to a 
deterministic outcome because the nonlocality cannot be defmed by an 
observer any more accurately than the locality associated with the 
fem1ion to which it is opposite. 

Baryons 

Clearly, with nilpotent fem1ions, a structure such as 

(ikE± ip + jm) (ikE± ip + jm) (ikE± ip + jm) 

will automatically zero, but one in which the p tem1 is split into 
components along orthogonal axes will produce a nonzero combination: 

(ikE± iipx + jm) (ikE± ijPy + jm) (ikE± IKpz + jm) 

Spin is defmed in a unique direction at any time, so, at any particular 
instant, the wavefunction will reduce, after nom1alization, to 

(ikE± iipx + jm) (ikE+ jm) (ikE+ jm) ~ (ikE± iipx + jm) 
(ikE+ jm) (ikE± ijpy + jm) (ikE + jm) ~ (ikE + ijpy + jm) 
(ikE+ jm) (ikE+ jm)(ikE± ikpz+ jm) ~(ikE± ikpz+ jm) 

There is a notable change of sign in the second case. 
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To maintain the symmetry between the three directions ofmomentwn, 
and the + and -values of the momentwn term, we can defme six possible 
outcomes, resulting in a superposition of six combination states: 

(ikE+ iipx + jm) (ikE+ jm) (ikE+ jm) ~(ikE+ iipx + jm) 
(ikE- iipx + jm) (ikE+ jm) (ikE+ jm) ~(ikE- iipx + jm) 
(ikE+ jm) (ikE+ ijpy + jm) (ikE+ jm) ~(ikE- ijpy + jm) 
(ikE+ jm) (ikE- ijpy + jm) (ikE+ jm) ~(ikE+ ijpy + jm) 
(ikE+ jm) (ikE+ jm) (ikE+ IKpz + jm) ~(ikE+ ikpz + jm) 
(ikE+ jm) (ikE+ jm) (ikE- IKpz + jm) ~(ikE+ IKpz + jm) 

Perfect gauge invariance is also only possible if the baryon 
simultaneously incorporates both left-handed and right-handed 
components or+ and -values of p. By the principle which we have 
previously applied to boson structures, baryons must therefore have mass. 
The principle is, significantly, the same as that which applies in the Higgs 
mechanism, even though the perfect gauge invariance between the six 
possible states or switching between the different p components is 
provided by massless gluons. The solution to the so-called mass-gap 
problem which this incorporates is a significant part of one of the prize 
challenge problems defmed by the Clay Institute. 

The Coulomb interaction 

One of the most important aspects of the nilpotent structure is that it 
offers an immediate separation of the local from the nonlocal. Essentially, 
everything inside a fermion bracket, such as(± ikE± ip + jm), is local, 
defmed by a Lorentzian structure, while everything outside it, such as a 
combination state or a superposition, is nonlocal. It is possible, then, 
from the possible nonlocal structures available to fermions, defmed by 
combinations and superpositions, to derive the local structures, inside the 
fermion brackets (essentially the potentials to be added toE or p) which 
would produce the same effect. When we do this we fmd that the 
possible local structures lead to just 3 classes of interaction which give a 
nilpotent solution, and these interactions correspond to those which, 
physically, we classify as electric, strong and weak. 

The first nonlocal effect is Pauli exclusion, which, in effect, is a 
prohibition on certain combinations, specified by nilpotency. Here we use 
Dirac's polar transformation to describe a fermion as a point-particle with 
spherical symmetry: 
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(+'kE'''(_g_ .!_+.j+Yz)+' ) -' .n a + -' pn . 'r r r 

To establish Pauli exclusion, we need to defme this operator as 
producing a nilpotent solution. Inspection reveals that this is impossible 
unless the ikE component also includes a term involving 1 I r to cancel 
out the terms with this factor multiplied by ii. This is a Coulomb term, so 
simply defming a point particle using the nilpotent operator automatically 
requires it to have a Coulomb potential because of Pauli exclusion. Pauli 
exclusion is an effect of a point-particle having spherical symmetry. The 
minimum operator for a point-particle is therefore of the form 

exactly as we require for the Coulomb interaction. 
This is easily solved, requiring, in fact, only six lines of calculation. 

First, we have to fmd the phase factor ¢ which will make the amplitude 
nilpotent. As in the standard solution, we assume that it is of the form: 

¢ = e-•rrr Lavr• 
1'=0 

We then apply the operator we have just defined to ¢and square the result 
to 0 to obtain: 

{ A)• { r v 1 .J+Yz), ( r v 1 .J+Yz), , E-- =- -a+-+-+ ... -+1-- -2 -a+-+-+ ... --1-- +4m . 
r rr r r rr r r 

Equating constant terms produces 

Equating terms in llr2
, following standard procedure, with v= 0: 
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Assuming the power series terminates at n', following another standard 
procedure, and equating coefficients of 1/r for v= n', we obtain 

2EA=-2.Jm2 -E2 (r+l+n') 

Algebraic rearrangement of these equations then yields 

E 1 1 
=o=========o=============== 

m 1 +-,--A_'-----.:-=- 1 + A z 

(r+1 +n')' ( J(j +Y:z)2 -A' +n')' 

This is a general formula, but in the particular case where A = Ze2
, this 

becomes the hyperfme or fme structure formula for a one-electron nuclear 
atom or ion, for example, that of the hydrogen atom, where Z = 1. 

The strong interaction 

A second case suggests itself for the strong interaction, which we know 
requires a linear potential to explain both its experimental characteristics, 
and also the nilpotent structures ofbaryons. We have found also that there 
must be a Coulomb component or inverse linear potential ( oc 1 I r), just 
for spherical symmetry; this has a known physical manifestation in the 
strong interaction in the one-gluon exchange. A nilpotent operator 
incorporating Coulomb and linear potentials from a source with spherical 
symmetry (the centre of a 3-quark system or one component of a quark­
antiquark pairing) can be written in the form: 

(+k(E A B )-·(8 1+.j+"h.) .. J - +r+ r +J or+ r-' r +ym 

Again, we need to identify the phase factor, which, by analogy with the 
pure Coulomb calculation, we might suppose to be of the form: 

¢ = exp(- ar - br2 )rr L avr v 
v=O 

Applying the operator we have defmed and the nilpotent condition, we 
obtain: 
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E 2 +2AB+ A• +B2 r2 + 2AE +2BEr=m 2 

r 2 r 

-(a2 + (r+v+
2 
... +I)' U+~L +4b2 r2 +4abr-4b(r+v+ ... +I)- 2a (r+v+ ... +I)) 

r r r 

Then, assmning a termination in the power series (as with the Coulomb 
solution), we can equate: 

coefficients of l to give 
coefficients of r to give 
coefficients of 1 I r to give 

These equations then lead to: 

b=+iB 
-2 

a=+iE 
y+v+l=+iA. 

B2 = -4b2 

2BE=-4ab 
2AE = 2a(r+v+ 1) 

The ground state case (where v = 0) then requires a phase factor of the 
form: 

¢ =exp(+iEr+iBr2 12)r'"'"-' 

The imaginary exponential terms in ¢ clearly represent asymptotic 
freedom, a term like exp (+ iEr) being typical for a free fermion. The 
complex~ term can be structured as a component phase, c(r) = exp (± 
iqA In (r)), varying less rapidly with r than the rest of¢. We can therefore 
write ¢as 

where 

¢ exp(kr+ z(r)), 
r 

k=±iE+iBr/2. 

The ftrst term dominates at high E, where r is small, close to a free 
fermion solution (asymptotic freedom); the second term, with confming 
potential Br, significant at lowE, when r is large (infrared slavery). The 
Coulomb term, for spherical symmetry, defmes the strong interaction 
phase, c(r), related to the directional status ofp in the state vector. 
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The weak interaction . -
One further interaction (the weak) is built into the structure of the 

nilpotent operator as a 4-component combination state. This requires a 
dipole or multipole term in addition to the standard Coulomb term from 
spherical symmetry. We can therefore suppose that the nilpotent operator 
takes a form such as 

(k(E A C ") {a 1+.j+lh) .. ) --;:- r +\or+ r-' r +ym 

where n is an integer greater than 1 or less than -1, and, as before, look 
for a phase factor which will make the amplitude nilpotent. Extending our 
work on the Coulomb solution, we may suppose that the phase factor is of 
the form: 

¢=exp(-ar-brn+•)rr I;a.r" .... 
Applying the operator and squaring to zero, with a termination in the 
series, we obtain 

Equating constant terms, we fmd 

-\] 2 E2 a- m-

Equating terms in r'b•, with v = 0: 

C2 
=- (n + I i b2 

iC 
b=±(n+1) · 

Equating coefficients of -I'_,, where v = 0: 

AC =- (n +I) b (I +f), 
(1 +f)=± iA 
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Equating coefficients of 1 I r2 and coefficients of 1 I r, for a power series 
terminating in n = n', we obtain 

and 
-EA=a(l + r+n'). 

An algebraic combination of these conditions produces: 

( mz;;Ez )l+r+n')' =-(1+r+n')' +(J +~)' 

E = . m JA (± iA + n'). 
j+ 2 

This equation has the form of a harmonic oscillator, with evenly spaced 
energy levels deriving from integral values of n'. If we make the 
additional assumption that A, the phase term required for spherical 
symmetry, derives from the random directionality of the fermion spin, we 
may assign to it a half-unit value (± ~ i), or (± ~ in c), and obtain the 
complete formula for the fermionic simple harmonic oscillator: 

E= m (~+n') 
j+~ 

The potential of the form Cl' made no assumptions about the value of 
n except that it was an integer > 1 or < -1. Any potential of this fonn, or 
any combination, will generate a harmonic oscillator solution for the 
nilpotent operator. They emerge from systems where there is complexity, 
aggregation, or a multiplicity of sources. Virtually any potential other 
than Coulomb or Coulomb plus linear, must be of this form, so we have 
effectively demonstrated that there are only three possible interaction 
types that can apply to a nilpotent fermionic operator. 

Partitioning the vacuum 

The nonlocal aspect of the fermionic nilpotent state(± ikE+ ip + jm) is 
defmed by a continuous vacuum -(± ikE± ip + jm). We can use the 
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operators k, i,j to effectively partition this state into discrete components 
with a dimensional structure, which can then be identified as the weak, 
strong and electric components responding respectively to the weak 
strong and electric charges. We can postmultiply(± ikE± ip + jm) by the 
idempotent k(± ikE± ip + jm) any number of times, without changing its 
state 

(±ikE± ip + jm) k(± ikE± ip + jm) k(± ikE± ip + jm) ... --+(±ikE± ip 
+jm) 

The idempotent acts as a vacuum operator. The same is also true of 
postnmltiplication by i( ± ikE ± ip + jm) or j( ± ikE + ip + jm ), Of course, 
these operations are also equivalent to applying T, P or C transformations 
to every even bracket. For example, 

(±ikE± ip+ jm) (+ikE± ip + jm) (±ikE ±ip + jm) ... --+(±ikE+ ip + 
jm) 

Here, every alternate state becomes an antifermion, which combines with 
the original fermion state to become a spin 1 boson(± ikE± ip + jm) 
(+kE ± ip + jm). 

Effectively, repeated post-multiplication of a fermion operator by any 
of the discrete idempotent vacuum operators creates an alternate series of 
antifermion and fermion vacuum states, or an alternate series of boson 
and fermion states without actually changing the character of the real 
particle state. A fermion becomes its own boson by combining with any 
of its vacuum 'images'. A boson can be similarly shown to be its own 
fermion or antifermion. Nilpotent operators are thus intrinsically 
supersymmetric, with supersymmetry operators Q = (± ikE ± ip + jm ), 
converting boson to fermion, and Qt = ( + kE + ip + jm ), converting 
fermion to boson, and we can represent the infinite post-multiplication 
sequences by the supersymmetric expressions such as Q Qt Q Qt Q Qt 
Q Qt Q . . . . It is even possible to interpret this as creating the series of 
boson and fermion loops, with identical energy and momentwn values, 
which an exact supersymmetry would need to cancel the self-energy term 
in renormalization, and remove the hierarchy problem completely. 

The identification of i(ikE + ip + jm), k(ikE + ip + jm) andj(ikE + ip + 
jm) as vacuum operators and the corresponding identification of i(ikE + 
ip + jm)i, k(ikE + ip + jm)k and j(ikE + ip + jm)j as their respective 
vacuum 'reflections' at interfaces provided by P, T and C transformations 
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provides a new insight into the meaning of the Dirac 4-spinor. The three 
terms following the lead term which is identified with the particle can be 
seen as the vacuwn 'reflections' that are created with the particle in the 
three coordinate axes of vacuwn space. The four components then 
become creation and annihilation operators acting on their respective 
vacua: gravitational (or inertial), strong, weak and electric. 

We can additionally see the three vacuwn coefficients k, i, j as 
originating in, or being responsible for, the concept of discrete, point-like, 
charge, which generates the particle state. The operators, k, i andj act like 
weak, strong and electric 'charges' or sources, acting to partition the 
continuous vacuwn represented by -{ikE + ip + jm), into discrete 
components, with special characteristics determined by the respective 
pseudoscalar, vector and scalar natures of their associated terms iE, p and 
m. 

The nature of gravity as acting like a summation of the other three 
forces, long predicted by this theory, is now a fundamental component 
also of many string theories under the name of 'gravity-gauge theory 
correspondence'. In addition, this theory also predicted the existence of 
the 'dark energy' long before its discovery, and fixed it as being 
equivalent to two-thirds of the energy of the universe, in line with recent 
results from the Planck Collaboration (2013). 

The duality of real and vacuum spaces 

Though the combination of two spaces leads to chirality and an 
asymmetry in the vacuwn space in terms of observation, at the deepest 
level the symmetry is retained. We can see this, if we construct the set of 
spinors, using the double vector notation, to generate the four components 
of the nilpotent structure from the basic (KE + ilipx + zljpy + ilkpz + 
iJm). As primitive idempotents, they are orthogonal (with zero products) 
and swn to 1: 

(1 - Ii - Jj - Kk) I 4 
(1 - Ii + Jj + Kk) I 4 
(1 +Ii-Jj +Kk)l4 
(1 + ll + Jj - Kk) I 4 

Here, we see that the status of the two spaces at this level is exactly 
identical, but that, as soon as they are applied in the nilpotent structure, 
the perfect symmetry is broken. The zero product of the spinors 
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(1 - ii- jj - kk)(1 - ii + jj + kk)(l + ii- jj + kk)(1 + ii + jj - kk) = 0 

interestingly recalls a structure from a quartic Finsler geometry, the 
Berwald-Moor metric 

where x1. X2, x3, x4 can be regarded as base units of the dual vector space 
formed by 1, ii, jj, kk (with vohune unit -1 ). 

Physical singularities (fermions or their products) appear to require a 
perfect dual vector space which nevertheless produces an asymmetry or 
chirality in the space of observation because it combines with the 
lUlobserved dual vacuum space in an asymmetric nilpotent structure. The 
nilpotent structure itself incorporates many forms of duality: operator and 
waveftmction; fermion and vacuum; fermion and vacuum boson; operator 
and amplitude; nilpotent and idempotent; broken and lUlbroken 
symmetries. Essentially, these all originate in the idea of the fennion state 
as defining a localized singularity, at the same time as we defme what is 
nonlocal or excluded from the singularity. 

The fermion has a half-integral spin because it requires simultaneously 
splitting the universe into two halves which are mirror images of each 
other at a fundamental level, but which appear asymmetric at the 
observational level because observation privileges the fermion 
singularity. Zitterbewegung is an obvious manifestation of the duality, 
but, in observational terms, it privileges the creation of positive rest mass. 

Though the duality results in fermion and vacuum occupying separate 
3-dimensional 'spaces', which are combined in the double Clifford 
algebra defming the singularity state, these 'spaces', though seemingly 
different in observational terms, are truly dual, each containing the same 
information, and the duality manifests itself directly in many physical 
forms. For example, we have alternative methods for defming the 
following phenomena using either real spaces axes (i, j, k) or vacuum 
space axes (1, J, K): 

Pauli exclusion 
spin Y2 
SR velocity addition 
holographic principle 
fermion state 

i,j, k 

antisymmetric If/ 

anticommuting p 
using 2 D of space 
area = space x space 
direction of p 
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I,J, K 

nil potency 
Thomas precession 
using space-time 
area = space x time 
E,p,m 



The relativistic connection between space and time notably exists in a 
different vector space to the connection between the three spatial 
components. It is not strictly 4-D at all, though it appears as such when 
we take the scalar product of a massless object. Assuming an intrinsic 4-
D connection gives us a problem with quantum mechanics, where time is 
not an observable, and also for Penrose's twistors, which have to assume 
a massless world, with the intrinsic motion of the particles at the speed of 
light. Though 3-D vector space incorporates a duality of its own in 
requiring vectors and pseudovectors, quantum mechanics really requires 
an additional duality. It uses a dual dual space, which does not require an 
arbitrary extension to 4 D. Mass is a natural consequence of this extra 
duality even if we assume that the intrinsic motion of the particles is at 
the speed of light. 

Higher dimensionalities naturally result from this double Clifford 
algebra. Thus, the nilpotent operator(± ikE± ip + jm) can be regarded as 
a 10-D object in vacuum space: 5 for iE, p, m and 5 for the unit axes k, i, 
j (or K. I, J). Six of the ten (all but iE and p) are compactified. The ten 
also reduce to 8 or 2 x 4 in a nilpotent structure when the intrinsic 
redundancy of m and the scalar 1 are considered. The nilpotent structure 
creates a self-duality in phase space which determines vacuum selection 
in exactly the way required for a perfect string theory, and, as we have 
seen, it automatically generates a gravity-gauge theory correspondence. 
The significant feature of this process, and in fact of our entire discussion, 
is that only 3-dimensional objects are needed to generate the entire 
structure, and that, in fundamental terms, this reduces to a single 3-
dimensional object and its dual partner. 

Appendix on predictions 

The long-term prediction of no SUSY particles, because each Standard 
Model particle is its own partner algebraically, looks like being upheld. 
The even longer-term prediction of no proton decay also looks like being 
upheld. Before its discovery in 2012, the mass of the Higgs boson was 
estimated at half the vacuum energy. At half the expectation value of the 
Higgs field, this would be 123 GeV. In fact, the measured value, at 126 
Ge V, seems to be half the value of its realisation in terms of the Wand Z 
particles (whose masses total 252 GeV). It may be that there will be no 
particle individual particle with invariant mass higher than 246 Ge V 
because this is the fixed energy of each point in space. The long-term 
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prediction of dark energy at 2/3 that of the universe seems to be supported 
by the recent measurements o(the Planck Collaboration (March 2013), 
which put it at 68 % with 68 % confidence limits. A prediction that the 
general relativistic field equations would show no nonlinearity, even in 
strong gravitational fields, is supported by recent results on a short-period 
binary pulsar (Antoniadis et al., 2013). 
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Abstract. We report the discovery of two dual and emergent sets of three irreversible 
hi-vectors - dubbed the TauQuernions T;., Tj, Tk - that are otherwise isomorphic to 
quaternions. This inherently dissipative 3-dimensional tauquernion space is a sub­
space of the geometric (Clifford) algebra 94,0 with generators {a,b,c,d}; a straight­
forward mapping produces a 3+ 1 dimensional sub-space with signature ( + - --) in 
Qs,o. The individual tauquernions are entanglement operators corresponding to the 
quantum mechanical Bell and Magic operators. The form T; + Tj + Tk has 64 sign 
variants of which 16 are nilpotent, which latter we identify as Higgs boson phases; the 
other 48 variants square to the unitary 4-vector ±abed, which we identify as the carrier 
of mass. A natural candidate for dark matter also emerges, which we analyze. We 
calculate the information content of these and related forms, draw an exact map of the 
entropic pathways an expansion will follow, and sketch how this Bit Bang develops. 
Photons are clearly represented and transparently intertwined in the space, and there 
is overall compatibility with relativity theory. 

Keywords: Tauquernions, quaternions, geometric algebra, spacetime algebra, 
Higgs boson, EPR, entanglement, Bell & Magic operators, space creation, quan­
tum gravity, mass creation, dark matter, black holes, background-independent, 
string theory, Fourier, Parseval, Clifford, emergence, co-boundary, computa­
tional, concurrent, distributed, co-occurrence, co-exclusion, process, mechanism, 
hierarchical, quantum computing, qbit, ebit. 
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1. Introduction 

The authors are computer scientists using geometric (Clifford} algebras to de­
scribe and investigate the properties of abstract distributed computer systems 
[11,12,14,15). In the course of these investigations, we have discovered the 
quaternion isomorphs, dubbed tauquernions, mentioned in the title. We apply 
this new mathematical description of 3 and 3 + 1 dimensions to a contemporary 
issue: the origin and formation of our 3 + 1d universe of 3-space, gravity, mass, 
time, causality, and entropy, and how all this can emerge from a quantum me­
chanical soup lacking all of these things. It is important to understand that our 
results are formally theory-neutral, in that they stem from a finite, discrete and 
combinatorial analysis of the entire phase space. 

Our foremost goal here is to describe these novel structures in a straightforward 
way, so our style is discursive rather than formal. We offer physical interpreta­
tions of some of the algebraic forms that appear in order to facilitate the transfer 
of this structure to the community of physicists. That is, we do computers, not 
physics. 

1.1 Computational and Physical Processes 

One might ask how a mathematics of concurrent computation can come to apply 
to questions of fundamental physics. There are two pieces to answering this, the 
first being a mathematics that can connect the two disciplines, and the second, 
given this mathematics, the details of the connecting isomorphism. 

Vve begin with the common view of a computer program - when it is executing 
- as a sequence of discrete operations 

()()()()()()()()()()()()()() 

where each parenthesis-pair stands for a single such operation. Such a sequence 
is called a process, and the following is a gloss on [11), to which the reader 
is referred for a more detailed exposition. The process-level of computational 
description refers not so much to entities themselves as to their interaction, and 
the sequence of states this produces. In our model, everything is a process, or 
an object built out of processes. 

The key property of a process is the exact order in which its component opera­
tions take place. To capture this ordering property algebraically we will require 
that each operation"( )" in the above sequence- now viewed as a product - be ir­
reversible (ie. no multiplicative inverse). This prevents algebraic manipulations 
from changing the effective order. 
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before U, ie. the actual process must specify that V must always wait (w) for U. 
That is, we want VU = V wU. Rewriting the lhs as VU = VVU and expanding, 

(-1 + V)(-1 + U) = (-1 + V)(-1 + V)(-U)(-1 + U) 

we find that VU = V(U-VU)U, and indeed w = U +UV is nilpotent so long as 
U and V anti-commute.' Computationally speaking, anti-commutativity means 
"independent of each other'', as in the practice of orthogonal software design, 
which focuses on ensuring that changes to one module do not affect another; or 
as in "asynchronously concurrent"; or both, as here. 

Processes like VU are exactly the processes covered by Turing's model of com­
putation, and since entities like U,V are the projecto1·s of U, V respectively 
(so-called measm·ement opemtors), they are also the observational bedrock of 
quantum mechanics. The key property of such processes - irreversible sequen­
tiality - makes them purely time-like processes. It is ultimately this time-like 
property that allows Penrose to conclude (18] that computational processes can­
not capture all the phenomena that quantum mechanics has to offer, among 
which is entanglement, which is fundamentally space-like. 

This prompts the question, "Where then is space-like computation?". Which 
prompts the question, "What is space-like computation, what might it do?!". 
An answer to the latter would be, Expand the semantic reach of the computa­
tional metaphor to directly capture and express fundamental spatial distinctions 
like left/right and inside/ outside. Given computation as currently practiced, 
we are forced to simulate (ie. fake) such matters, eg. via syntactically sug­
ared high-level languages resting on intricate, and usually sequential, run-time 
environments. 

(The issue is analogous to the background-in/ dependence of a physical theory, 
where string theory assumes a 3 + ld background, whereas quantum gravity 
theories, requiring that 3+ ld be constructed, are background independent. In 
these terms, we are presenting, here, a background-independent, non-super­
symmetric, quantum gravity theory.] 

Space-like computation, whatever it is, must (for our purposes) provide the 
equivalent of the quantum potential, with its wave-like properties. Now it is 
characteristic of a primitive wave that two things change at the same time. 
In the scalar world, these two things could be the x and y coordinates as one 
traverses the circumference of the unit circle. Computationally, this dynamic 
corresponds to viewing x and y as independent, but nevertheless jointly interact­
ing, concurrent processes that together achieve the required symmetry. 2 That 

1Note that we could instead write Vii = Vfr(J, which leads tow = ~V- UV. This 
corresponds to the so-called advanced solution, and VVO to the retarded solution. 

2For example, alternating expression (or possession) of a conserved resource. 
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------------

The algebra we will use is geometric (Clifford) algebra Q, a graded vector al­
gebra with both inner and outer products, over the finite field Z3 = {0, 1, -1 }; 
Grassmann algebras are a subset of geometric algebra, and the Pauli and Dirac 
algebras are particular geometric algebras. In fact, geometric algebra is now 
often advanced as the much-needed common mathematical language for all of 
physics (3,6, 7,10,19]. We have a similar motivation vis a vis computer science. 
The next section introduces geometric algebra; here we anticipate it on a gross 
level. 

A Theorem of geometric algebra: For any expression P E g, P is irreversible 
iff P has an idempotent factor X = X2 • 

So make each operation "( )" an idempotent. An idempotent X that is also 
a projector has (in Z3) the form X= -1 +X, where X is unitary: X 2 = 1. 
Putting all this together, a sequential process - aka. a measurement sequence -
looks like 

(-1 +Xn)(-1 +Xn-l) ... (-1 +Xi)= ilX;, X"f = 1 
n 

This is probably all more or less familiar to physicists. But the computational 
reading of the algebra takes the correspondence much further. In this reading 
[11], the idempotent form -1 +X is identified as the primitive synchronization 
operation signai(X), understood to mean "signal the occurrence of the event/state 
X". 

Example. Multiple signallings of the same event's occurrence are semantically 
equivalent to a single such signal, just as the measurement specified by X yields 
no further information upon being repeated: xn = X. 

Signal's complementary primitive is wait(X), ie. wait for the occurrence (signal) 
of event X. It is critical to understand that this waiting is not polling, ie. that 
the waiting process is constantly and actively checking to see if X has occurred 
yet, aka. busy waiting. Busy-waiting turns out to be a quite untenable view 
in an asynchronously concurrent universe - something subtler is necessary. A 
careful analysis [11] reveals that the computational concept of wait(X) must be 
mapped, speaking now algebraically, to some nilpotent w E g, w2 = 0. 

In physics, nilpotents supply the causal - and energy conserving - connection 
between discrete physical events. Wait's play the corresponding role in the syn­
chronizational context - causal connection and conserving information between 
computational events. Nilpotents are irreversible, so the implication of the 
above theorem is that we must derive our w's from our idempotents. 

We can derive w's form by considering two consecutive events U;V, forming the 
process VU. We will insist, now speaking computationally, that V never occur 
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is, rotation is an example of a space-like reversible computation, and is also a 
process. 

We accomplish the translation from asynchronous concurrent computational 
processes to algebraic expressions in the following way. First, we interpret our 
algebra's "+" sign to mean that (eg.) U + V are two asynchronously occurring 
and executing, independent, computational entities, ie. processes or objects 
constructed from same. Multiplication is action, transformation, process; both 
measurement and rotation are examples. 

Next, we interpret 1-vectors a, b, c, ... as (reversible) processes possessing a single 
bit of state. These 1-bit processes are deterministic since the one state predicts 
the next, which alternation encodes frequency v. Since the grade of the vector 
equals the number of bits of process state that it encodes, the m-vector ab has 
zm~2 = 4 internal states, these being 

{a+ b, -a+ b,a- b, -a- b} 

Furthermore, these can be paired as a+ b = -(-a- b) and a- b =-(-a+ b), 
and these in turn mapped to the orientation of ab (via the standard and diagonal 
bases) as: 

{a- b, -a+ b} >-7 +ab and {a+ b, -a- b} >-7 -ab 

This mapping of states, computationally speaking, allows the whole, ab, to 
maintain a fixed external appearance- its orientation of either + 1 or -1 -while 
at the same time its component processes a and b are themselves undergoing 
their own (1-bit) state changes. If processes a and b have a stable joint behavior, 
namely oscillations in one of the above two state-pairs, then ab accurately reflects 
this in a stable orientation. 3 Furthermore, the computations a-b ++ -a+b and 
a+b B -a-b, like their algebraic co-respondents, are reversible, both being simple 
inversions. That is, they are both wave-like, ... and at that, exactly so (p. 11). 

Returning to the introductory paragraph, the mathematical language common 
to the disciplines of physics and computer science is found, as sketched in the 
preceding, to be geometric algebra. The connecting isomorphisms are 

• 1-vectors a, b, c, ... with magnitudes ±1 represent primitive, reversible pro­
cesses with 1 bit of state; and map frequency v. 

• m-vectors, m > 1, represent internally-concurrent process-objects encod­
ing zm bits of state, externally exhibiting (spin) orientation ±1. 

3 The ambiguity regarding the "actual" state of ab leads to the uncertainty principle. 
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• Signai(U) is defined to be the idempotent U = -1 + U, a measurement op­
erator on a unitary U; and Wait(U) is then the nilpotent U + UV, with the 
interpretation that (a later} event Vis causally connected to (an earlier) 
event U. 

• Time-like/causal/irreversible processes are then Wait/Signal sequences (WS}*. 

• The wave-like quantum potential iJ! <;; g equals the computational g, 
denoted G, constituting an untrammelled, non-deterministic, concurrent 
computation. 

Using this algebra, Matzke [10] found that the quantum entanglement Bell and 
Magic operators have the form wx ± -yz. We show in §7.2 that this form cannot 
be simulated by a time-like process. It is therefore especially important in the 
following that the reader understand that when we write a sum in the algebra, 
say U + V, we are seeing two concurrently executing wavelike objects U and V, 
not two dead multi vectors belonging to some algebra. [Readers liking conceptual 
origins might want to read §7.2 first.] 

Thus, when we catalog the unitary entities in the geometric algebra Q3 and find 
exactly three families thereof, whose properties encourage their interpretation as 
neutrino, electron, and proton/neutron; and we also find three quarkish families 
x + -yz, with inherent confinement; along with photons x + 'Y + z; and mesons = 
quark plus anti-quark; etc. etc., all of which matches the standard model to a 
T (cf. Appendix I); on top of which, it being a fact that Q3 is isomorphic to the 
Pauli algebra, we find it entirely reasonable to conclude that it is real physics 
that is being described. Perhaps then it will not be so surprising that we find 
that signals associate to fermions, and waits to bosons. 

The Standard Model having exhausted Q3 's semantic carrying capacity, we grad­
uate seamlessly to Q4 and thence to construct 3+ 1 space as Q1,3, along with 
gravity and mass. Here, among many other corresponding physical phenomena, 
we find corroboration for earlier proposals [23] linking gravity and quantum 
entanglement. 

Finally, citing [2] (and see also [22]}: 

"A minimal quantity of heat, proportional to the thermal energy and called the Lan­
dauer bound, is necessarily produced when a classical bit of information is deleted. A 
direct consequence of this logically irreversible transformation is that the entropy of 
the environment increases by a finite amount . ... we experimentally show the existence 
of the Landauer bound ... " 

Rolf Landauer (1962}: "Information is physical." That is, the now empirically 
demonstrated physicality of information is what ultimately constitutes the con­
nection between physics and computation. 
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Add to this the conclusion of Masanes et al. [24] that not only can the standard 
formalism of quantum mechanics be formally derived from four information­
oriented axioms, but as well that their solution is unique. "Bits" are real and 
cannot be subdivided. Information replaces and generalizes energy in their 
(and our) view. At the other end of the conceptual spectrum, Moreva et al 
[25] conclude from an entanglement-based experiment (as do we from analysis) 
that time is an emergent phenomenon "deriving from correlations", to which we 
append that time emerges solely from entanglement (§3). 

The next section (§1.2} introduces geometric algebra. We then define the quater­
nion isomorphs in the title of this paper (§2), show how they fit into the Dirac 
algebra (§3) and why their sum should be identified with the Higgs boson (§4}, 
their relationship to the Bell and Magic quantum entanglement operators (§5), 
the extension to dark matter (§6), an information-theoretic analysis of these 
results (§7), and an entropy-driven Bit Bang (§8) that generates all of the fore­
going structures. 

1.2 Geometric Algebra 

For readers unfamiliar with geometric algebra: given a set of anti-commuting 
1-dimensional unit vectors {a,b,c, ... }, these vectors generate the combinato­
rial space {±1,{a,b,c, ... },{ab,ac,ad, ... },{abc,abd,abe, ... }, ... } all of which m­
vector elements are mutually orthogonal. 4 Thus n generators generate a space 
of 2" dimensions. The generators are, simultaneously, the primitive reversible 
2-state sequential processes at the bottom of the computational construction. 
Uniqueness is established by the vector name, ie. we use single character 
lower case alphabetic characters vs. the matrix column bra-ket notation used 
with Hilbert spaces. Upper-case letters denote arbitrary multi-vectors, eg. 
IA+BI -<: IAI+IBI; and the inner product obeys x·Y = xY, eg. b·ab = -b·ba = ii 
(see [3,6,7,10] for operator-precedence rules). 

We use the canonical geometric algebras Qn,o = gn, but over Z3 = {0, 1, -1}, so 
a2 = +1, a+ a= -a= a, etc., which, in replacing "0,1" with "-1,1", maintains 
a binary feel, but with vastly expanded semantics compared to Boolean logic 
and automata theory. We interpret +a to mean that whatever a indicates is 
currently present, and a that it is not; Oa denies a's very existence. 5 Few (if 
any} of our results apply only in Z3 : certain things- structural things- are just 
easier to see without the additional complexities of multiplicities of identicals. 

Geometric algebra's product ab = a · b + a 1\ b = -ba is anti-commutative, but 
otherwise follows the usual associative and distributive laws. Arbitrary multi­
vectors A, B usually neither commute nor anti-commute. 

4 See also http:/ fwww.euclideanspace.com/maths/algebra/clifford/index.htm . 
5 We stress that zero is not a value, and we would never write "a = 0''. Rather, zero 

appears as a situational indicator, eg. "a+ ii = 0", meaning "the occurrence of a excludes the 
occurrence of a". Or GBA = 0, meaning that the computation A; Bi C has terminated. 
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All of our calculations have been done with a custom Z3 geometric algebra 
symbolic calculator, a Python upgrade of the calculator described in [14]. One 
should not expect to get the same results from a generic Clifford algebra tool 
without thoughtful tampering. We use Planck units: G = c = li = k = 1. 

Notation. Due to the extreme symmetry of Yn over Z3 , one may safely as­
sume that a given expression is valid for all sign variants unless otherwise 
noted. Nevertheless, we sometimes write generic expressions using x, y, ... E 
{a, b, c, .... }, with x, y, ... taken without duplication, and all sign variants im­
plied unless otherwise noted. For example, the expression x - xy could denote 
a - ab, -a - ab, b - ab, c - cd, . . . but not eg. a or ab alone, nor a + be, nor 
a+ ab (because of the explicit minus sign}. To minimize clutter, we use forms 
with minimal minus signs, and in particular often 1 + x rather than -1- x (the 
latter being indempotent and the square of the former), even though sometimes 
it's not quite 'correct'; readers who find this bothersome can just multiply by 
-1. We sometimes distinguish between the elements of the abstract geometric 
algebra g and the subset G that is currently instantiated. 

We stress that the various algebraic expressions that we will present and dis­
cuss are discrete computational struct·ures, eg. 'plus' means 'concurrent'. That 
is, we view a, b, ab, ... as local, deterministic processes whose externally visible 
states oscillate between ±1. So the state changes expressed by the algebra 
represent concrete discr·ete computations producing concrete ie. determinate, 
non-statistical discrete results. But since the "computation" consists of all pos­
sible non-exclusionary processes running flat out concurrently, the familiar non­
determistic statistical picture of quantum mechanics nevertheless emerges. This 
computational view replicates Feynman's sum-over-paths interpretation by re­
alizing, concretely, the Bayesian encoding underlying Dirac's < VIU > bra-ket 
notation (meaning "the probability of V's occurrence given U's"). 

In summary, the Heraclitean "everything is process" interpretation that we· are 
placing on the algebra is quite different from that of standard treatments of geo­
metric algebra [3,6, 7, 10,19]. The generators {a, b, c, ... } are, ultimately, primitive 
distinctions, encoding only '±' = 'opposite' in 1d. This expands in > 1 dimen­
sions ( ab, abc, . .. ) to an m-ary xnor·, ie. a negated xor. It would be a complete 
misunderstanding to understand our g expressions as m.l.t. formulae. " 
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2. The TauQuernions 

The quaternions encode 3d space via the multiplication ( = rotation) table: 

I x II Q; - ab I Q; - ac I Q• -be I I x II Q; I Q; I Q• I 
Q; -1 -be ac Q; -1 -Q. Q; 
Q; be -1 -ab Q; Q. -1 -Q; 

Q. -a.c ab -1 Q. -Q; Q; -1 

The corresponding tauquernions are Ti = ab- cd, Tj = ac + bd, Tk= ad- be. 6 

Their multiplication table is below left; on the right is the same table, but with 
the mapping 1+abcd >--+ "-1". We emphasize that the tauquernion relationships 
below are independent of the restriction to Z 3 . 

Tc· 1 +abed -ad+bc ac+bd ' T; " -111 -Tk r; 
Tj ad-be 1 +abed -ab+cd T; Tk ~~-1" -'Ti 

Tk -ac-bd ab-ed 1 +abed Tk -Tj T; " -1" 

Like the Q's, the T's anti-commute, eg. TiTj= -TjTi; close circularly, eg. 
TjTk=Tj ; and -TiTjTk = TkTjTi. 

One can easily see that the two tables to the right, quaternion and tauquernion, 
are isomorphic. The tauquernions, elements of 94 , recapitulate in four spatial 
dimensions what the quaternions, elements of 93 , do in three (but with a twist). 

We always operate on the left, so Tk TjTi read right-to-left is the sequence 
Tj; Tj; Tk . This ''full circle" rotation defines "+1" = ("-1")2= (1 + abcd)2 = 
-1 - abed, which is idempotent. 

In fact, since wx + yz has the idempotent factor -1 ± wxyz , then via the 
aforementioned theorem (§1.1), all tanqnemions wx+yz are irreversible. The 
details are revealing: 

(d-~4 =~-~[(ab-~(d-~]~-~ 
= (ab- cd)[1 + abcd](ab- cd) [ "-1 "] 

= (ab- cd)( -ab + ed) invert 

= -(ab- cd)(ab- ed) 
= -(1 +abed) ie.- (-1) 

= -1 - abed idempotent 

="+1" 

6 There is also a conjugate set: {T: rj , r£. } = {ab + cd, ac- bd, ad+ be}. There 
are 8 such triples: ±Ti.±T;±Tk, and similarly for T'. Choosing a particular triple, as here, 
constitutes an arbitrary choice or coordinate system orientation, cf. the "right hand rule'' in 
3d. 
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which identities also justify our identification of 1 +abed = "-1" in the table. The 
interplay between ±1 and "±1" is the interplay of reversible change (space-like, 
w) and irreversible change (time-like, 2"d Law), and constitutes the scalar nub 
of what tauquernions do: connect a space-like inversion directly to an exactly 
corresponding time-like inversion: ( -1)(ab- cd) = (1 + abcd)(ab- cd). 7 

Thus, at least in principle, simply by replacing every (namely reversible) quater­
cion element xy in one's work with (the irreversible) xy + wz, one in effect 
replaces an explicit time coordinate with an implicit one, perhaps allowing for 
great simplification. 

The conjugate tauquernion table below differs only in negating the Q's: 

I X II 
T; 1- abed ad+bc -ac+bd Tj "-1" Tk -Tj 
7; -ad-be 1- abed ab+ed T; -Tk " -1" r; 
T{. ac-bd -ab-ed 1- abed Tk T; -r; "-r' 

I I I 
It follows that -T; TjTk = -1 + abed = "+ 1" just as we earlier saw that 

-T;TjTk = -1- abed= "+1". 

The table below reifies these mappings for ±1 [a sqert is the square root of an 
idempotent]: 

I fl= u+l" I 's type H 

1-abed -1+abed sqert' " -1" 

1 +abed -1- abed sqert "-1" 

-1+abed -1 +abed idem' "+lll 

-1- abed -1- abed idem "+1" 

Taking 1-abed as Minus One (first row above) as an example, then as expected 
the usual multiplication/sign rules hold: 

(-)x(-) - -1+abed + 
(-)X(+) - +1- abed -

(+)X(-) - +1-abcd --

(+)X(+) - -1+abed + -

7 This is also a nice example or the familial affinities of the algebras 9mod4. Note that 
(1 ± obcd)E = -E only if E is an eigen-form of abed (see later). 
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Actually, this goes further, since it turns out that 1 ±abed are examples of a 
"sparse -1" [14]. Make a "truth table" for the expression abed and represent the 
result as a vector, yielding +abed= [+ - - + - + + - - + + - + - - +] 
and -abed= [- + + - + - - + + - - + - + + -]. The elements of these 
vectors form a (generally non-orthogonal) basis for their space. 

Let zero · represent a state that does not occur; i = [-----------­

----],and 1= [++++++++++++++++].Then +l+abedis 

+ 
+ + 
+ 

+ + 
+ 

+ + 
+ 

+ 
+ 

+ + + + 
+ + 

+ + 
+ 

+ + + 
+ 

That is, 1 +abed= [- · · - · -- · · -- · - · · -]= [------ --] is a 
sparse -1, and 1 -abed is another. These forms, sparse and otherwise, play a 
key role in the information-theoretic analysis of §7. 

Summing up, we conclude that the two dual sets of tauquernions are each exactly 
isomorphic to the quaternions, the essence of 3d space, except that tauquernion 
space is inherently dissipative. This obtains b~cause Ti, Tj, Tk are individually 
irreversible, as is their sum. Particulate motion in this space is thus thermo­
dynamically governed ie. entropic, and this property encourages us to identify 
such motion with gravitational free-fall. It follows logically that the two con­
jugate T -forms describe the two polarization states of gravitational waves, not 
least because of the following extraordinary unifying connection (apparently 
overlooked, since it appears in none of the obvious references [3,6,7,10,19]). 

Theorem (Parseval). The projection of a function F onto an orthogonal inner­
product space is the Fourier decomposition of F. • [17] 

Since the elements a, ab, abc, . . . are all mutually orthogonal, whence 9n bas 
0(2") dimensions, every expression in 9n is therefore implicitly a wave operator 
as well as the structural description of a computational entity: we can auto­
matically impute wave-like properties to both entities (eg. the T's and their 
sums) and interactions (products) in the tauquernion space. This gives the 
whole endeavor a thorough-going hierarchical and holographic/ distributed feel, 
and completely redeems de Broglie's initial insight (1923) of the fundamental 
wave-like nature of reality. 

At the same time, tauquernion space is 3d spatially, and so inherently supports 
the propagation of 3-dimensional waves even though it takes four orthogonal 
distinctions {a, b, c, d} in phase space to construct these 3d waves. We now turn 
to the algebra of this 3d space. 
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3. Spacetime Algebm 

We seek to define the spacetime a/gebm {h.3 = {'Yo, 'Yb ')'2 , ')'3 } with signature 
(+---). 

Perhaps naively, we initially considered mapping abed to the time-like dimension 
via the vector ')'o: the properties of geometric algebras cycle mod 4, so there is a 
family resemblance between, say, {i0 and {i4 , which is our case in point, since Yo is 
the scalar dimension, and similarly, mass is a scalar quantity. It is only required 
that 'Yo square to + 1, as indeed abed does. This ensures that abed qua mass, and 
its automatically dissipative motion, isn't pushed into the background. Right 
or wrong, this approach was abandoned when we discovered the density of the 
physics and mathematics involved, and so instead we here simply establish the 
standard formulation as well as we can. 

The {i4 tauquernion space, arising out of the quantum spinorial soup, is discrete, 
and so we can associate a new fifth, unchained dimension t on which to tally a 
sequence of discrete motions in the 3d tauquernion space. Changes in the state 
of abed map to the 1-vector t. 

The resulting {i5 generators are then {a, b, c, d, t}. Consider now only the sub­
space defined by the three tauquernions T.i, Tj, Tk and t. The latter squares to 
+1 while the other three square to "-1", so we have a Lorentzian (+- --) 
space, and it is our understanding that the requirements of special relativity are 
therefore satisfied; the next section pursues the putative connection to general 
relativity. 

Define now within {i5 the mappings 

t r-+ ')'o 

where the 'Y< are anti-commuting 1-vectors. The 'Y< then generate an explicit 
basis for the spacetime algebra Y1,3: 

"The structure of this algebra tells us practically all one needs to know about 
(flat) space time and the Lorentz transormation group" [3, p.131]. We refer 
the interested reader to [19 §24.4-7, 5, 8] for extended discussions of applying 
geometric algebra to the standard formalisms of QM and GR. 

This said, the derivation of the Dirac equation in [19] points out that the key 
is that the quaternions can be construed as the square of the D'Alembertian 
wave operator D. It follows that if/when the tauquernions, being irreversible, 
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are substituted for the quaternions, it might well be possible to eliminate the 
explicit time coordinate entirely and end up with the algebra g0 ,3 (over the 
tauquernions) as a description of spacetime. [A paper currently in draft extends 
this to include electro-magnetism {including Majorana fermions} in g0 ,6 .] 

Howsoever, every set ofT's also satisfies the basic condition for them to connect 
with each other: that the grade of the parts ab + cd >-+ 2 + 2 :o; 4 not exceed 
the grade of their union, here abed >-+ 4 . In so doing, and taking advantage of 
g's being a coordinate-free algebra, the next section shows that an associated 
coordinate-free, dissipative, discrete Higgs field then automatically appears as 
the 3+ 1d T -coordinate system itself 

The transition from this discrete field to a continuous field over lR lies beyond our 
remit, but we note that the entire algebra lies under the umbrella of Parseval's 
Identity, and by implication, of harmonic analysis, which latter applies very 
generally. Indeed, this identity is wave-particle duality in a nutshell. 

On the other hand, some writers [1] suggest abandoning JR. altogether: 

"A key assumption of [the contemporary Theory-of-Everything scene] is that it regards 
the laws of physics as being the bottom line, and assumes that these laws govern a 
world of point particles or strings (or other exotica) that is a continuum. Another 
possibility is that the Universe is not at root a great symmetry but a computation. The 
ultimate laws of Nature may be akin to software running upon the hardware provided 
by elementary particles and energy. The laws of physics might then be derived from 
some more basic principles governing computation and logic. This view might have 
radical consequences for our appreciation of the subtlety of Nature, for it seems to 
require that the wor1d is at root discontinuous, like a computation. This makes the 
Universe a much more complicated place. If we count the number of discontinuous 
changes that can exist, we find that there are infinitely many more of them than 
there are continuous changes. By regarding the bedrock structure of the Universe as a 
continuum we may not just be making an approximation but an infinite simplification.11 

We note that (1) actually, we show that truly concurrent computation {cf. §7.2) 
upholds the symmetries, cf. the isomorphism between eg. g3 and the Pauli 
algebra; and (2) the mentioned "hardware'' is crude analogy by our standards -
we construct it all {§8}. 

Howsoever, an entity X existing in phase space 'l1 = G comes to occupy 3 + ld 
tauquernion space via the projection ( Ti + Tj + Tk) ·X, which projection also 
masks the quantum dimensions automatically, replacing them with 'Ti, Tj, Tk 
and, indirectly, t. Thus we predict that contemporary experiments looking for 
extra spatial dimensions will all fail. 
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4· The Higgs Boson 

We identify 1l = Ti + Tj + Tk , whence 1{2 = 0, with the Higgs boson. To see 
why, we look more closely, 

1l = (ab- cd) + (ac + bd) +(ad- be) 

=ab+ac-bc + (a+b-c)d 

from which we see that 1l- our space constructor- is a combination of a quater­
nion triple ab + ac - be and a photon a + b - c. Both of these are nilpotent, as 
is their sum. The photon is however conflated with the d-distinction, a change 
in which is mapped notionally to the aforementioned t dimension to achieve a 
traditional time-like process. 

Thus each of the three T's is a combination of one quaternion component and 
one photon component. Clearly, 1l contains three dimensions - in both the 
space-like and time-like senses - in the most compact way imaginable. The 
nilpotence of 1l also expresses the existence of a vacuum energy directly. 

Note that 1l's form has 6 components which together generate 26 = 64 sign 
variants. Of these, 16 are nilpotent and thus Higgs bosons (ie. phases), 

1l = {X= ±ab ± ac ±be± ad± bd ± cd I X 2 = 0}. 

The other 48 square to ±abed, which we identified in the preceding section as 
the unit mass carrier; these 48 form the set 

M ={X= ±ab±ac±bc±ad±bd±cd I X 2 =±abed}. 

We interpret the sign of abed as its rotational orientation in 3+ 1 space. 

We note that for X E 1l, X abed = abed X = ±X, but only abed X = X abed 
for X EM. 

The elements X of 1lUM are eigenforms of abed: X abed 2" X, which in turn 
define boundaries of abed. That is, we define ox abed= X abed to be the bound­
ary of abed with respect to X - - in formal analogy to partial differentiation, 
and with a nod to DeRham's theorem. If also X abed 2" X, then we further, 
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and oppositely, say that the co-boundary of X is abed: o(X) = abed. That is, 
we define the "integral" 0 in terms of the "derivative" a. 8 

In this way, abed is the integral of any X E 1iUM, since o(wx + yz) = wxyz. 
That is, o is a mass-creation operator with respect toM, and a creation operator 
generally. Said oppositely, both 1i and M are boundaries of abed, but have very 
different properties. 

We now re-write 1i as 

(1 + abcd)(ab + ac- be)= 1i (1) 

The factor 1 + abed is a self-boundary of abed. Being irreversible, 1 + abed is 
a time-like operator. This operator is operating on the quaternionic 3d space 
ab + ae- be, which produces a bosonic potential 1i. 

Thus equation 1 looks like a local version of Einstein's basic GR equation: the 
time-like aspect of a mass abed, aka. "gravity'', operates on a 3d space ab+ae- be 
made out of the very same mass aspects, and produces a wave-like, space-like, 
but inherently dissipative 3 + 1d potential, aka. the space-time stress tensor. 
The general form is 1i = (±1 ± wxyz)(.ry + xz + yz). 

Let X, Y, Z over a, b, c, d and X', Y', Z' over p, q, r, s be two sets of tauquernions 
written in the above form. Noting that that form commutes, we can write 

(X+ Y + Z)(X' + Y' + Z') = (1 + abcd)(ab + ae- bc)(pq + pr- qr)(1 + pqrs) 

Thus the mass-mass interaction (1 + abcd)(1 + pqrs) has l{(ab + ae- be)(pq + 
pr- qr)}l = 32 = 9 spacelike connections, ie. three (tauquernion) dimensions 
and 9 (super-string?) connections in one package. 9 

That is, the dissipative 3d tauquernion space can also be seen as the time-like 
interaction of masses in a reversible 3d quaternion space. If one happens to 
believe that space is entirely passive, ie. tbat (1 + abcd)(1 + pqrs) is the whole 
story, then one arrives at the classical, Newtonian, view of masses in 3d space 
affecting each other mysteriously. 

8 More concisely, JqX = ±Q iff 8xQ = XQ and IXQI = lXI. We take 8 and J to be 
elements of the algebra - rather than the usual operators over the algebra - this being a less 
sophisticated but more concrete encoding of the same ideas. 

9 However, even though (ab + ac + bc)(pq + pr + qr) is nilpotent, and as well sandwiched 
between two idempotents, from which it derives, this is not a causal connection with (ab + 
ac- bc)(pq +pr- qr) playing the role of Wail, because (1 +abed)(!+ pqrs)#(l + abcd)(ab+ 
ac- bc)(pq + pr- qr}(l + pqrs), cf. (11]. That is, in the classical view represented by 
the form (1 +abed}(!+ pqrs), space plays no causal role. (As well, (1 +abed}(!+ pqrs) = 
(l+pqrs)(!+ahcd), which commutativity shreds any sequential or localized notion ofcausatity.J 
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In this context, note that xy + yz + zx = x·yz(x + y + z), so electro-magnetism 
(via photon x+y+z) is directly in the picture, namely neatly woven into the 3d 
gravitational space created by the tauquernions. It bears mentioning, though, 
that the (±1 ± wxyz )(x·y + xz + yz) form obscures the connection to the EPR 
phenomena that underlie the very existence of abed and the space it both lies 
in and forms (§5, next). 

Recalling eqn. 1 

(1 + abcd)(ab + ac- be)= 1i = ab + ac- be+ (a+ b- c)d (2) 

which describes matter acting on space, we can multiply through by abc to 
create the abc-conjugate form: 

(1- abcd)(a + b- c)= a+ b- c- (ab + ac- bc)d (3) 

which describes matter interacting with light. Summing the rhs's of eqns. 2 
and 3 ( = concurrent occurrence) and re-arranging, we get: 

(2) + {3) =(a+ b- c)(1 +d) + (ab + ac- bc)(1- d) 

Note that 1 ± d are measurement operators. Recalling the lhs's of eqns. 2 
and 3, Voila, light interacts with matter in entropic quaternion space (lhs) with 
resulting effects {rhs) on the light and the space: 

{1- abcd)(a + b- c) 
+ 

{1 + abcd)(ab + ac- be) 

(a+b-c)(1+d) 
+ 

(ab + ac- bc)(1- d) 

All four pieces are nilpotent, as are their sums (ie. each side), which indicates 
that this interaction is an irreversible, ie. thermodynamic, event. 

If instead of adding eqns. 2 and 3, we subtract their expanded forms: 

(1- abcd)(a + b- c) 

(ab + ac- bc)(1- d) 
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then both sides simplify to (a+b- c) -abc( a+ b- c), a purely electro-magnetic 
state. 

If this seems obscure, it is perhaps well to recall that every expression in the alge­
bra is a Fourier decomposition, and so what is being 'added' are the oscillations 
of concurrent processes at various frequencies, phases, and dimensionalities. 10 

That is, these descriptions are "particulate" only insofar as one can single out 
some sub-expression that is unitary that one can then try to measure. 

5. Entanglement 

We now expand on our earlier statement that each Ti is a quantum mechan­
ical Bell/Magic operator, and that the Tj and Tk are the Bell/Magic states. 
These operators capture quantum entanglement, and are the bread and butter 
of quantum computing research and practice. For the reader's convenience, Ta­
ble 1 reviews these as they are usually represented. [In this section, we will refer 
to QM's causal potential with the symbol Y .] 

We have previously shown [14] that the Bell operator is ab + cd and the Magic 
operator is its conjugate, ab - cd; and that these operators are irreversible due 
to multiplicative cancellation. Two qbits qA and q8 in classical states qA = a-b 
and q8 =c-d define an initial global state qAqB = (a-b)(c-d) =ac-ad­
bc + bd = Tj+Tk. 11 This global state is called "classical" because it namely can 
be factored (''separated") like this. The Bell and Magic operators entangle such 
classical states to produce an ebit, which, in not being so separable, displays 
the characteristic EPR properties [15]. 12 

Ebits have the same form as qbits except that they are a sum of bi vectors, 
instead of vectors. A qbit spinor is a single bivector ab or cd, but an ebit spinor 
is the sum of entangled spinors, eg. ac + bd. Like a qbit, an ebit acts as a single 
co-exclusion (§7.2), even though it is made out of two qbits. 

One can only be amazed to find, as Tables 2 and 3 show, that the Bell/Magic 
operators and the states they generate also in fact exactly cover 1{, and thus 
constitute a completely different partitioning and view of 1{-space, which, let us 

10Name1y, in our example, a+ b- c+ ab+ ac+ ad- bc+bd- cd- abd- acd+ bed. 
11 Meaning (reading off the signs) a A --,b and c A --.d, ie. each encoding 11zero" (vs. "one": 

-a+b and -c+d}. Thus qC = q{f = ''0'' here. This encoding, while conceptually redundant, 
makes 11zero/one" superposition states explicit. 

12The original labels for qbits in [13] were QA = ao- at,QB =bo-b., so QAQB = aobo­
aobt - atbo + atbt. Therefore Bell = aoat + bobt and Magic = aoat - bob11 so then 
Bo = - aobo + atbt and k/o = aobt - atbo, whence one can clearly and explicitly see the 
entanglement in the redistribution of the ai and bj, whence QA and qB are no longer sepamble. 
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basis basis state 1 basis state 2 basis state 3 basis state 4 

standard too) [01) 110) ill) 
diagonal IO'O') 10'1') 11'0') 11'1') 

Bell .p+ <!> >¥+ >¥ 
j,( too)+ ill)) j,< IOO) -Ill)) j;< [01) + 110)) j;< 101) -110)) 

Magic j, ( IOO) + ill)) -j,( too)- ill)) :},< [01) + 110)) +.< 101) -110)) 

Table 1: A summary of quantum mechanical bases in standard notation. 

not forget, has a definite 3 + ld cast. Successive application of the Bell/Magic 
operators produces the corresponding Bell/Magic states. Notice that the states 

drop from four bivectors (Tj+Tk) to two bivectors (-Tj) due to cancellation, 
and it is this information loss that makes the entanglement thermodynamically 
irreversible.13 

The Bell and Magic states are 90" out of phase, 14 and since the starting state is 
generally some classical state like qAQB = ac- ad- be+ bd, which can now be 
rewritten as B3 + 1113 , the multiplicative cancellation occurs due to 111 x Bell = 0, 
Ex Magic= 0 orB x 111 = 0. These cancellations mean these states have disap­
peared from the causal potential Y, and cannot be reached by any multiplicative 
operator ("transformation"), but rather only by addition, eg. 111s = Eo - ac. 
Recall that addition means concurrency, ie. -ac comes from the outside. 

The fact that the Bell and Magic states cannot transit (back) to classical states 
via multiplication is relevant as well to the M 2 = abed states. For example, 
M = ab+ac+ad+bc+bd+cd =Bell+ B 1 +1113 , a mixture of Bell and Magic 
states. Only by concurrently adding new bivectors to the mix can a system exit 
these cyclicalfclosedfentangled state spaces. Since all of these states are related 
via entanglement relationships, we see that ''mass" is massively entangled. 15 In 
the language of EPR, the it>± and q~± are singletons that represent maximally 
entangled states and behave as multiple "things" acting as one, with consequent 
non-local correlations. Mass, once created, is thus stabilized. 

Table 4 demonstrates that the states Tj and Tk are the Bell and Magic states. 
[We have shown only two conjugate sets of tauquernions here, but as noted 
earlier, there are eight. Of the eight, four are related to Ti and the other 
four to T

1 i· The groups of four are all sign variants of each other such that 
1l =Ti+Tj+Tk, whence 1{2 = 0. All of these sets contain all of the Bell/Magic 
states.] 

13We note that the Hilbert space version shows reversibility. So far as we know [14J, this is 
the only such deviation. 

14In general, the state transitions are B(i+I)mad 4 = BiBell and A-/(i+l)mod4 =!vii Magic. 
151n fact, any two conjugate T's could be named "Bell" and 11Magic" operators, and all would 

otherwise be the same. It's best to just assume that everything is more or Jess entangled with 
everything. Consequently, gravity is everywhere. 
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The complete overlap of 'T -space and entanglement space means that fundamen­
tally, qbits and ebits are directly related to, and in fact are, the underpinnings 
of gravity and mass. Fittingly like gravity, the EPR effect is non-polar, since 
the two ends of the effect are equivalent and of the same valence. The lesson of 
this reasoning is that irreversible quantum mechanical entanglement establishes 
the associative footings on which, and out of which, gravity constructs its net. 

qAqnBell = Bo = .p+ = -ac+ bd =-T11 

BoB ell = Bt = .p+ = ad+bc= T' z 
B,Bell = B2 = <P = ac-bd= T, 
B2Bell = Ba = w- =-ad- be= -T1 

z 
BaBel! =Bo =-T, 

Table 2: Bell operator and resulting Bell states. 

qAqnMagic = Mo = ad- be= Tz 
MoMagic =Mt = -ac - bd =-T11 

M,Magic =M2 =-ad+ be =-Tz 
M2 Magic =Ma = ac+ bd = T,, 
MaMagic =Mo =Tz 

Table 3: Magic operator and resulting Magic states. 

'Tx 'Ty 'Tz r' 
X 'T~ r' z 

Magic Ma = -k£. Mo= -M2 Bell B2 = -Bo Bt = -Ba 
Magic Ma =-M, M2= -Mo Bell B2 = -Bo Ba = -B, 
Magic Mt =-Ma Mo= -M2 Bell Bo = -B2 Bt = -Ba 
Magic Mt =-Ma M2= -Mo Bell Bo = -B2 Ba = -B1 

Table 4: Equivalence of Tauquernions and Bell & Magic operators 
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6. Dark Matter 

In this section and the next two, we move from explanations of the tauquernions 
and the structures they form to some consequences. Foremost among these is the 
question of whether the tauquernions have anything to say about dark matter, 
which we now take up. §7 then presents an information-theoretic analysis of all 
of our results to that point, and §8 uses this analysis to tell a Bit Bang story. 

Other work (11] has shown that the key elements of the standard model- bosons 
and fermions, three quark families, etc. -are captured by g3 , which is isomorphic 
to the Pauli algebra {i,j,k} via the mapping {iab;iae,ibc}. In particular, the 
unitary elements of g3 all correspond clearly: 16 

Particle g3 element I Family size 

primitive distinction X 3 
neutrino family x+y+xy 3 
electron family xy+xz 3* 
proton family x +y+ z+xy+xz 3 

neutron-xyz proton y - z + xy - xz + yz 3 
photon x+y+z 1 

* Eg. the three electron siblings are: xy+xz,xy+ yz,xz+ yz. 

The middle column of the table exhausts the catalog of unitary (X2 = 1) entities 
in g3 and are all familiar, so dark matter is presumably not to be found here. 
We therefore must look in g4. The simplest non-trivial unitary element of g4 is 

m=a+b+c+d 

Assuming that m must be related to mass, ie. abed, we now calculate m 's 
co-boundary to abed, which requires that Om abed ~ m, and which yields 

Om abed= m abed= -abc+ abd- aed +bed 

so Om abed is not similar tom, ie. m is not an eigenform of abed. We can though 
apply the distributive law to the sum of 8AX = B and 88 X = A, whence 
OA+BX = (A+ B)X, which yields (m + mabed)abcd ~ m + mabed. So the 
desired co-boundary is 

16Primitive distinctions - first row - may not be observable in actuality. Photons - last 
row - are, of course, nilpotent. Note that the electron projection operator -1 + xy + xz = 
x( -x + y + z), ie. an x-rotation of a photon; there is a similar factorization of -1 ±proton. 
See Appendix I for the complete Z3 9'3 Standard Model. 
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o(a + b+ c+ d- abc+abd- acd +bed)= abed 

We therefore define, in parallel with tlUM, the set V, 

V={(w+xyz) + .(x+wyz) + (y+wxz) + (z+wxy)} 

which has 28 = 256 sign variants. V is our hypothesis for dark matter, and we 
now investigate its structure and properties. , 

If one looks at V from a projective point of view, the 1-vector generators of the 
algebra are points defined by lines/processes that intersect a common plane, ie. 
are simultaneous with, and bivectors are the directed lines on that plane that 
connect these points. In this projective view, w, x, y, z are then the vertices 
of a tetrahedral volume element with triangular faces {wxy,wxz,wyz,xyz} = 
({w,x:iy,z}). We hypothesize that these four triangles correspond to the 4 Planck 
areas/In 2 = 1 bit relationship [20]. Similarly, the (x + y + z)-boundary of the 
triangular face xyz yields the quaternions {xy,xz,yz}. 

Just as 1l UM, along with 1 and abed, form the largest even sub-algebra of !14 , 

so V is the largest odd sub-algebra. The elements of V form three subsets, the 
elements of the first of which all square to quaternionic triplets: 

Vq ={DE VI D2 = xy + xz +yz, x,-y,z E {a,b,c,d}} 

and contains 128 elements. We note that xyzVq = ±1 ± wxyz + {H,.M}. 

There are also 96 D's that are 8'h roots of unity (and thus material): 

Vu ={DE VID2 = (w+x)(y+z) & D8 = 1} 

Note that (w + x)(·y + z) = -(y + z)(w + x), ie. they anti-commute, and so the 
Vu possess a spinorial quality. One can also multiply D 2 out: (w + x)(y + z) = 
( wy + :z;z) + ( wz + xy) and see that these are two tauquernion forms (and, 
simultaneously, separable states). We will see in §7.1 that the Vu contain a 
further subdivision of 96 = 16 + 80, indicating the existence of two types of 
material dark matter. [This time, xyz Vu = ±1 ± wxyz + M.] 

Finally, there are 32 nilpotents D0 , for which xyz Do = -1 + w:cyz + 11.: 

Do= {DE VI D 2 = 0} 

Thus {xyzV} = {-1 +wxyz+tlUM}, ie. normal matter and dark matter can 
be understood as being 3-dimensionally perpendicular to each other. Finally, 
128 + 96 + 32 = 256, whence V = Vq U Vu U V 0 • 
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The fact that { xyz D} = { -1 + wxyz + 1-l U M} and therefore that the elements 
of D and 1-l U M can be rotated into each other allows a further analysis. 

Letforexample D.=-a-bcd; Db=b+acd; De=e-abd Dd=d+abe, 
and define generally D =D.+ Db+ De+ Dd such that D E D. In this example, 
D 2 = -be+ bd- cd E Dq. Now construct their multiplication table, ie. D~: 

n. X v. D. = -a- bed D. = b + acd De-c- abd Dd = d +abc 

D. 0 ab+ed ac- bd ad+bc 
D. -ab+cd 0 0 0 

De -ac -bd 0 0 0 

Dd -ad+bc 0 0 0 

The sum of the Da row is namely DaDb +DaDe+ D.Dd E 1-l', and anti­
commutatively, the sum of the Da column is DbDa + DeDa + DdDa E 1-l. That 
is, D~ = 1-l + 1-l' ! This holds for all elements of Dq - all such tables contain 
zeroes except for one element each from 1-l and 1-l', and thus each element of Dq 
harbors the potential for both 1-l and 1-l' and so a complete set of tauquernions. 17 

In contrast, the corresponding tables for elements of Do contain only zeroes; 
and the tables for Du all look like this one: 

Da 0 -ab-ed 0 ad-be 

D. ab-ed 0 ad- be 0 
De 0 ad+bc 0 -ab-ed 
Dd ad-be 0 -ab+cd 0 

wherein we see that only two out of the three tauquernion forms appear, doubled, 
and including conjugates; the table sums to ab + cd- ad+ be= (a- e)(b- d), 
where again there is a spinorial aspect (and two separable qbits). The missing 
tauquernion forms can be recovered from the products of the others, so Du xD., 
like D 0 x Dq, harbors an alternative pathway to 1-l U M. 

A rather different view emerges when one realizes that most of the partial prod­
ucts ( w + xyz )( x + wyz) in fact generate T's, and it is only their signs and sums 
in the full 4-way form that generate the three different outcome D's. Thus Dfi's 
five T's sum to zero (three T's are identical and the other two complementary), 

17Since 1+3 :$: 4, dark patches can conned smoothly, and, since the algebra is self-consistent, 
this connection must be compatible with that of1tU M. 
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V~'s four T's sum to (w + x)(y + z), and V~'s three T's sum to a quaternion 
triple (three x·y's are identical). So there are a lot ofT's floating around in the 
soup. Nate in this connection that, like the individual T -components of 1{ and 
M, each of the Vk and sums thereof satisfy /iVk = abed. 

Finally, these T's are also entangled states, so (via xyz-rotation) all of the 
elements of V are also entangled, although it seems that this is indirect. 

Summarizing, like 1{ and M, the elements of V also can interact to form space 
and matter, but more indirectly. A key issue is the energies at which w + xyz 
and V form, and closely related is the question of what role the pathways from 
V to 1l U M play. 

A pertinent question at this point is, How do the elements of V interact with 
light? We have identified xyz as the carrier of charge [11], but that is in the 
context that li(x+y+z+xyz(x+y+z)) = xyz, where xyz(x+y+z) = xy+xz+yz 
is the spinorial basis of the magnetic effect, and x, y, z each"~ electrical charge". 
This context is missing from both 1{ U M and V. So, on this basis, one should 
not expect much of an electro-magnetic interaction with either of them (and 
indeed, 3d space is indifferent to electro-magnetism). 

On the other hand, V's four xyz terms still have spin, even if it isn't identifiable 
any more as "charge". This spin could nevertheless conceivably retain electric 
charge's like-sign repulsive property, and so could be advanced as a contributor 
to the vacuum energy. We also note that H can be rewritten (w-xyz)(x+y-z). 
However, re xyz (which squares to -1 and hence is 'polar'), where there's a 'plus' 
there's a 'minus', which polarity opens the door for (eg.) dark "ionic cluster" 
formation and the like, a possibility that can at this point only be speculation. 
Finally, Vo and Vq, both being roots of zero, will both presumably contribute 
to the vacuum energy. 

Howsoever, the fact that there now is a detailed mechanism in hand should 
simplify the task of finding a viable way to detect dark matter generally. 
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7. Information Content and Kind 

\Ve now embark on exact calculations of the information content (and its trans­
formation) of expressions in the algebra. The overall picture is a ''Bit Bang'' 
modelled as the algebraic expansion g0 -t {h -t g2 -t g3 -t g.,, which ex­
pansion is driven by entropy creation via the conversion of information from 
space-like (non-Shannon) to time-like (Shannon) form. 

Section §7.1 calculates the numerical information-theoretic skeleton of our Z3 
g4 algebra, which is possible because of its finiteness and relatively small size: 
3<2') "" 43 million expressions. Since the algebra is the phase space, this exact 
(!) numerical skeleton bas cosmological implications that we pursue in §8. 

Section §7.2 then describes the computational mechanisms that define and cre­
ate the aforementioned space-like, non-Shannon information. [ Our term "non­
Shannon information" is distinct from, but consistent with, a like-sounding 
entropy-related term, "non-Shannon-type inequalities". ) 

In this section we refer to G = {1, a, b, c, ... , ab, ac, ... , abc, ... , ... } rather than 
g because we are referring specifically to actual instantiated elements, though 
these of course also belong to the abstmct geometric algebra g. 

7.1 Calculating Information Content 

The formal concept of information is due to Claude Shannon (1948), who defined 
the information content I of an event x as 

I(x) = -lg Px 

where Px is the probability of occurrence of the event x, and lg is the logarithm 
to the base 2. Thus, as is well known, the more improbable the event, the greater 
its information content. The import of this definition for us is best understood 
with the example of an if-then-else-type decision. The form [11) 

X(1+(-1-a,±a)) + Y(l+(-1+a,±a)) 

describes the computation if a then X else Y, where the brackets (,) = ±1 
indicate the inner product of the idempotent measurement probe -1 ± a with 
an entity ±a in the surround, and + indicates as usual the concurrency of the 
processes X, Y E G. Here we see that a static bit of information - encoded 
in the ± state of a - is converted into the motion [state change) of one of the 
processes X or Y, since one of the two expressions will yield zero and the other 
minus one (minus because X (or Y) now changes state). Note particularly that 
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the information is consumed: a has been changed by the measurement and no 
copies made. One correctly concludes that a binary decision costs one bit of 
information.18 

Applying this to Gn, this means that a measurement sequence that would locate 
some entity E Gn having an information content of m bits would require m such 
nested if's. Furthermore, this decision process transforms the static space­
like information contained in the current state of Gn into dynamic time-like 
information at an exchange rate of 1 : 1. It is this transformation (on a massive 
scale) that constitutes our expanding time-like universe. 

This transformation is fundamentally entropic in character. Because the alge­
bra is finite, we can calculate the probability of occurrence of an expression, 
and so we can know its information content. Knowing that, we can follow the 
entropy trail - loss of information - and make predictions about what further 
transformations will occur. 

We therefore now embark on the calculation of the information content, mea­
sured in bits, of every element of Gn, n = 0, 1, 2, 3, 4. This is an exact calculation, 
since it is based on pure combinatorics and resulting integer ratios. 

The binary nature of our algebra allows us to fully expand the combinatorial 
content of any given expression in the fashion of a ''truth table". Below we show 
the tables for ab, abc, and abed. Beneath the tables are vectors of the respective 
result (rightmost) columns; these result vectors are the basis for our information 
content analysis. 

18Notice, by the way, how the ]-dimensional 180° opposition between X and Y as coded 
in ±a becomes a conjugate (90°) opposition, -1- a vs. -1 +a, in the translation from the 
sequential to the concurrent view. 
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alb cldlabcdl 
- - - - + 
- - - + -

- - + - -

alb clabcl - - + + + 
- - - - - + - - -

- - + + - + - + + 
- + - + - + + - + 
- + + - - + + + -

+ - - + + - - - -

+ - + - + - - + + 
+ + - - + - + - + 
+ + + + + - + + -

+ + - - + 
+ + - + -

+ + + - -

+ + + + + 

[+- -+] [- + +-+- -+] [+- -+- + +--+ +- +- -+] 

As an example, we take the vector for abc and add to it + 1 and -1: 

abc= [- + + - + - - +] 
+1 = [ + + + + + + ++] 

[·--·-· ·-] 

abc=[-++-+--+] 
-1 = [---- ----] 

[+ .. +. ++ ·] 

Note that the pattern of symbols is the same for abc and the two sums, the only 
difference being that in abc, the two symbols that appear are + and -, whereas 
in the sums the two symbols are · and-, and+ and ·,respectively (recall that 
· symbolizes zero). But the ratios are the same: here, four of each and rw third 
symbol. And if you think about it, this proportionality will always hold - all 
that happens with the summing of abc with ±1 is that one so-to-speak rotates 
a three-symbol mapping vector[· ,+,-]first to[- ,· ,+]and then to [ +,- ,·] 
: the proportions will therefore always be the same. 

Aryument. A pattern encoding consists of a 3-tuple (#O's, #l's, #-l's), which 
forms a signature of the vector's structure. Suppose we have the pattern vector 
(2, 2, 4) and imagine a (minimal) decision tree- think nested if's- that identifies 
any expression having this pattern. Then the amount of information embedded 
implicitly in the tree's decision points is the measure of the tuple's information 
content. The three symbols are interchangeable because the tree's form (the 
structure of the search space) is indifferent to which symbols lie at its leaves. 
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Since the ratios are invariant under exchange of symbols, the counts can appear 
in any order, so we just sort the tuples numerically. 

This symbol-invariance implies that ±abed and ±1 ± abed all have the same 
information content. Since the latter form defines a measurement on the former, 
and these two therefore should be the same, this is comforting. For this and 
similar reasons, we think that any classification scheme ( cf. binning, below) 
must subscribe to the collapsing of 0, 1, i into one signature.19 

This all means that we can classify every expression in the algebra in terms of 
its result-vector's signature. We will soon see that these informational classi­
fications exactly match the 1l, M, V, bosonic, and unitary particle structures 
previously discussed. 

Since a polynomial E gn has maximally IGn I = 2" mutually orthogonal terms, 
and their coefficients can be one of 0, 1, -1, we get the set S, of size lSI= 32", 

which covers all of the possible expressions in G. With S in hand, we can count 
how many times k each pattern X occurs, and we can then divide k by lSI to 
get the probability p of X's occurrence: 

k 
Px = 31a,.t 

lf k = 1, then is there is but one single occurrence of X in S, so Px would be 
minimal, but this actually can't happen- the best you can do is the three scalar 
constants, 0, 1, i, where k = 3. 

From the other end of the microscope, a minimal X requires the full measure 
of the information in S in order to be identified and isolated. That is, the 
information content I of an expression X E G is 

I(X) = -lg Px = -lg 31~.1 = lg 3~· bits 

X's information content is thus a function of how many other X's share its 
signature, and the size of the space it occurs in. 

An obvious application of this is to ask, What is the information content of 
some particle P, having in mind the fact [20] that 1 bit = 4 Planck areas /In 2 
(, 10-66 cm2). 

Thus, for example, a single Higgs boson H = (1 + wxyz)(xy + xz + yz) = 

:cy + xz + yz + wx + wy + wz exists in 16 states out of the 64 possible in the 
form. Its information content is therefore 

19Void cannot have its own category because, by definition, it has no properties by which it 
might be so categorized, including the property of having no properties. Void can first become 
manifest in the distinction [1, i}. 
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I( H) = lg 31~ = 21.3594000 bits 20 

The next step, the conversion of bits to Gev, turns out to be unexpectedly 
complicated, and is our current focus. The final paper will hopefully contain 
this result for 1-i, M, V, and all the rest too. 

Of interest equal to individual particles, however, is the picture painted with 
the broader brush of the signatures and bin counts themselves. 

Table 5 lists the information content, calculated in this broader way, of relevant 
elements of Gn. Because rarity/information is relative to the size of the space, 
the measure of (say) ab is 2.17 bits in G2 , 7.29 bits in G3 , and 18.9 bits in 
G4 • But at the same time, all of a, ab, abc, and abed, at any given level, have 
the same measure, since their uniqueness stays proportional to n; note that 
namely these also have the highest information content after 0, 1, i. In general, 
the lower the bit value, the larger the family of entities having that count, and 
oppositely, the higher the count, the smaller the family. We now explore this a 
little more. 

The function bitsN(X) 
X E G relative to GN. 

a'N lg calculates the information content of cmmt(X's) 

Then, r·e G0 , the three scalar constants 0, 1,-1 are all known and occupy the 
entire space, which is of size 320 

= 3 states, one each for {0, 1, -1 }, 

• So each occurs with probability p = ! >-+ lg 3 = 1.58 bits, but 

• Known means bitsO(O) = bits0(1) = bitsO( -1) = lg i = lg 1 = 0 

• So G0 actually contains no information. 

In G1 there are 321 = 9 states, three for Go's scalars, E (0, 0, 2), and 2 + 4 = 6 
more for ±a and ±1 ±a, both E (0, 1, 1): 

• The scalar constants are known, and so they contain no information, but 
nevertheless occupy three slots in the state space=;.. bits1(1) = lg3 = 1.58 
bits.21 (It is a mod-3 coincidence that the numbers for Go and G1 are the 
same.] 

• 1-vectors occupy the remaining states in G1, so bits1(±a) = lg 1 = 0.58 
= bits1(±l ±a). 

20This result differs from Table 5 (below) because we have ignored the other members orits 
bin, (4,4,8}. Also, we don't know what the experimentalists are actually measuring- perhaps 
we should have calculated ±1 ± H, etc. 

21 Recall that 0, 1, -1 all map to the same pattern, whence 3 and not 1. 
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• The net result is that exactly 1 (classical) bit of information is encapsu­
lated in the structure a: lrits1(1)- bits1(±a) = 1.00. 

For G2 , the algebra of pure qbits: 

• The scalar constants are known, but occupy state space: bits2(1)= lg( 8i) = 

4.75 bits.(ditlo} 

o Here is a smallest addressable state: (1-a)(1-b) = 1-a-b+ab E (0, 1, 3) 
>-+ lrits2((1-a)(1-b)) = lg(~!) = 1.75 bits, corresponding to a single row 
of the form's "truth table". The 24 count comes from the 24 sign variants 
of 1 - a - b + ab plus the 23 sign variants of a + b + ab. 

• In §7.2, we show how it is that simple concurrency, a+ b, mere concur­
rent existence, contains and encodes information. Here we just calculate: 
lrits2(a) = 2.17 = bits2(b), bits2(ab) = 2.17, bits2(a +b)= 1.17 bits, 

• Whence bits2(ab)- bits2(a +b) = 1.00000000, where we show in the D's 
the number of significant digits that actually are available in these (exact) 
calculations; we show rounded values otherwise. 

o Let m = a+ b + c + d, whence D = m + m abed and D 2 = 0. As shown in 
Table 5, 'Do E ( 4, 4, 8) and each D contains 5.53 bits of information. 

• But abc D = -1 + ab- ac +ad+ be+ bd + ed +abed computes to 6.87 bits 
(not shown). One does not expect a reversible operator like abc to change 
the information content of an entity. 

• The explanation is that the rotation by abc changes the signat.Jre bin 
that the expression falls into, and the new bin, namely (2, 6, 8), has fewer 
members, and so the information content is higher. ''It's not the rotation's 
fault." [We will exploit this phenomenon in our Bit Bang story in §8. J 

o In Table 5, there are two examples of binnings that further differentiate 
the 3-signature- (a+ b + c)d and M 2 are both E (4, 6, 6), yet their bit­
measures differ, 12.1 vs. 7.08, and again a+bed and 'Do are both E ( 4, 4, 8), 
but their measures are 15.1 vs. 5.53. 
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Form Particle Vector (9a and 94 samples) g, 

go 
Void r-t 0 IS [' " "·] E (0,0,8),0 1.58 
±1 are [±±±±±±±±] E (0,0,8},0 1.58 

g, 
a ±exist [----++++] E (0, 4, 4), 1 0.58 
1-a (measure) [---- ... ·] E (0,4,4),1 0.58 
RowO (1- w) ... (1- z) E (0,1,1),(0,1,3), (0,1,7),(0,1,15) 0.58 

ab ±spin [++- -- -++] E (0, 4,4), 1 -

a+b co-occ [++ .... --] E (2,2,4),2 -

a+b+ab v [------.·I E (0, 2, 6), 3 -

a+ab W,Z t [· ·.++ .. --] E (2,2,4),2 -

1+ ab [-- .... --] E (0,4,4),1 -

abc ±charge [-++-+--+] E(0,4,4),1 -

a+bc quark [· ++.-. ·-] E (2,2,4),2 
ab+ac e [-. ·++· ·-] E (2, 2,4), 2 -

a+b+c+ab+ac p [----. ++-] E (1,2,5),5 -

a+b+c 'Y [· --+-++·] E (2,3,3),3 -

ab+ ac+bc 3-space [· ------·] E (0,2,6},3 -

g. 
abed +mass ~--+-++--++-+--~ E (0, 8, 8), 1 
1- abed [· --.-. . --. . -. --·] E(0,8,8),1 

qAqB 2 qbits [· ·+-. . -+. . ·] E (2, 2, 12), 4 
a+b+c+d [-++. +. ·-+· '-. --+] E (5, 5, 6), 4 
(a+ b + c)d [· . +-+--++--+-+. ·] E (4, 6, 6), 3t 

M, {16/64} proto-mass [. ·+·++··++·+· . ·] E (0, 6, 10), 6 

M2 (32/64} proto-mass ~+-·-·-++-·-·-+~ E (4, 6, 6), 6j: 

1l (16/64} Higgs ~-++·-+--+-·++·~ E (4, 6, 6), 6 

Bell= ab+ cd =T' [-. ·-·++· ·++·-· ·-] E (4,4,8),2 
Magic= ab-ed =T [· -- ·+. ·++· . +. --·] E (4,4,8),2 
Eo- -ac+bd [· +- ·+. . --. . +. -+·] E (4,4,8),2 
Mo -ad-be [· +-.-. ·++· . -. -+·] E (4,4,8),2 
a +bed dark [+. ·+·++· . --.-. ·-] E (4,4,8),2j: 
Vo dark [-.-. ·-·+-·+· . + ·+] E (4,4,8),8j: 

v. dark ~+-·++--++--·+-~ E (2,7,7},8 
v. {80/96} dark [--. ·-+-+· . ++] E (4,4,8),8 
v. {16/96} dark [+. ·-] E (1, 1, 14}, 8 

Table 5: Information content (in bits) of principal 9n forms. t Tentative. j: See text. 
Note that dark matter is non-palindromic. 
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2.17 7.29 18.9 
2.17 7.29 18.9 
1.75 7.09 18.8 

2.17 7.29 18.9 
1.17 4.70 15.1 
1.75 5.29 15.6 
1.17 4.70 15.1 
2.17 7.29 18.9 

- 7.29 18.9 
4.70 15.1 

- 4.70 15.1 
- 2.70 11.5 
- 3.29 12.1 
- 5.29 15.6 

- - 18.9 
- - 18.9 
- - 14.1 
- - 10.1 
- - 12.1 
- - 13.1 
- - 7.08 
- - 7.08 
- - 15.1 
- - 15.1 
- - 15.1 
- - 15.1 
- - 15.1 
- - 5.53 
- - 6.87 
- - 5.53 
- 15.9 



These examples show that information content values like those in Table 5 
are sensitive to the binning algorithm that is used. Fortunately, whatever the 
binning, the results will always be consistent because the underlying population 
is the same. 

Our general-purpose binning algorithm (used in Table 5) first applies the 3-
pattern signature, and then further bins together only those expressions having 
the same number of non-scalar terms. 22 Therefore, co-occurrences/ qbits x + y, 
electrons xy + xz, and quarks x + yz, which already have the same signature, 
will still bin together. Thus, the numbers in Table 5 and its cousins will always 
be indicative rather than definitive, since how one bins is determined by which 
interaction-classes one is interested in. 

There are other interesting things in Table 5: the information content of space 
as described by classical quaternions is 3.3 bits smaller than that of matter 
(15.6- 18.9). Photons (a+ b- c) and their confounding (a+ b- c)* d have 
the same measure, 12.1, which is rather larger than 'H's 7.08, which contains 
them. There are apparently two forms of proto-mass M (13.1 vs. 7.08), and we 
note that the former is a sparse + 1 variant. Singletons always have the highest 
bit value after the scalars, even more than two classical qbits qAqB. But then, 
given their spin, they are bits yo. Finally, note that the Bell/Magic states, V, 
quarks, and electrons all have the same measure, 15.1, only slightly less likely 
than light, 12.1; and versus the rather more likely 1L and M at 7.08 bits. 

Howsoever, as the expansion proceeds - - g1 -+ g2 -+ ga -+ g4 in Table 5 -
- W's information content shrinks as the information in 3 + 1d gets denser and 
denser. For example, the two classical bits qA ,q8 use 4 spinors and 14.1 bits 
to encode 1 ebit - time-like stability costs! Matter itself is only slightly denser 
at 18.9 bits per: frozen potential (because actualized), robbed of its variability 
through loss of degrees of freedom. This is the fate of the space-like non-Shannon 
information that is converted, as the expansion of the universe, into time-like 
Shannon information. 

We pursue this entropic expansion in a cosmological setting in §8. Before doing 
so, we introduce and define the concept of non-Shannon information, and show 
how this builds structure. 

7.2 Non-Shannon information 

There is a subtle paradox - concerning kinds of information - that we must 
deal with before going further. Shannon's concept of information, as we have 
seen, can be viewed as a descent into a binary tree from root to leaf, where at 

22This increases the number of bins from 10 to 14 for G3, and from 30 to 86 for G4. For 
example, in the text just above, (a + b + c)d E ((4, 6, 6), 3), M E (( 4, 6, 6), 6), a + bed E 
((4,4,8),2) and Vo E ((4,4,8),8). All43 million expressions were binned. 
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each branch point, one bit is consumed in the choosing of one path versus tbe 
other. Two points should be noted: (1) the (information represented by the) 
bits are( is) consumed and converted into the motion/advance of the descent­
process; and (2) action is what this is all about ... this sequential process is blind 
to context, and sees only its own (namely causal) point of view. The process 
concept, here exemplified, is sequence and action, combined. Thus Shannon's 
view of information is purely time-like. 

It is difficult to see how Shannon's definition misses anything out, and yet ... it 
does. There is a kind of information that falls beyond it, namely the information 
of concurrent existence, what we call non-Shannon information. The following 
Coin Demonstmtion makes the argument. 

Act I. A man stands in frvnt of you with both hands behind his back. He shows 
you one hand containing a coin, and then returns the hand and the coin behind 
his back. After a brief pause, he again shows you the same hand with what 
appears to be an identical coin. He again hides it, and then asks, "How many 
coins do I have?" 

Understand first that this is not a trick question, or some clever play on words 
- we are simply describing a particular and straightforward situation. The best 
answer at this point then is that the man has "at least one coin", which implicitly 
seeks one bit of information: two possible but mutually exclusive states: statel 
= "one coin", and state2 = "more than one coin". 

One is now at a decision point - if one coin then X else Y - and only one hit 
of information can resolve the situation. Said differently, when one is able to 
make this decision, one has ipso facto received one bit of information. 

Act II. The man now extends his hand and it contains two identical coins. 

Stipulating that the two coins are in every relevant respect identical to the coins 
we saw earlier, we now know that there are two coins, that is, we have received 
one bit of information, in that the ambiguity is resolved. We have now arrived 
at the dramatic peak of the demonstration: 

Act III. The man asks, "Where did that bit of information come fr·om?" 

Indeed, where did it come from'/?! The bit originates in the simultaneous pres­
ence of the two coins - their co-occurrence - and encodes the now-observed 
fact that the two processes, whose states are the two coins, respectively, do not 
exclude each other. 23 

Thus, there is information in (and about) the environment that cannot be ac­
quired sequentially, and true concurrency therefore cannot be simulated by a 

23Cf. Leibniz's indistinguishables, and their being the germ of the concept of space: simul­
taneous events, like the presence of the two coins, are namely indistinguishable in time. 
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Turing machine. Penrose concluded in [18] that Turing machines cannot sim­
ulate quantum mechanics. Both Turing and Penrose consider the case f II g, 
meaning execute the non-interacting processes f and g in parallel (and harvest 
their results when they end). Clearly one gets the same results whether one runs 
f first (!;g) or g first (g; f), or simultaneously, f II g. In this functional view of 
computation, the only difference is wall-clock time. The Coin Demonstration is 
not about these cases at all, but rather asks, Can f e.rist simultaneously with g, 
or do they exclude each other's existence? This is the fundamental distinction 
that we draw. 

More formally, we can by definition write a + ii = 0 and b + b = 0, meaning 
that (process state) a excludes (process state) ii, and similarly (process state) 
b excludes (process state) b. 24 Their concurrent existence can be captured by 
adding these two equations, and associativity gives two ways to view the result. 
The first is 

(a+ b)+ (ii +b)= 0 

which is the usual excluded middle: if it's not the one (eg. that's+) then it's 
the other. This arrangement is convenient to our usual way of thinking, and 
easily encodes the traditional one/zero (or 1/l) distinction.25 The second view 
is 

(a+ b)+ (ii +b)= 0 

which are the two superposition states: either both or neither. 

The Coin Demonstration shows that by its very existence, a 2-co-occurrence like 
a+b contains one bit of information. C<>-occurrence relationships are structural, 
ie. space-like, by their very nature. Such bits, being space-like, are the source 
of non-Shannon information. 

[Cf. Table 5, this information is twice that of a orb alone in G, but 2.17-1.17 = 

1 bit less than a, b or ab in G2 .] 

Act IV. The man holds both hands out in front of him. One hand is empty, but 
there is a coin in the other. He closes his hands and puts them behind his back. 
Then he holds them out again, and we see that the coin has changed hands. He 
asks, "Did anything happen?" 

24Th is is the logical bottom, and so there are no superpositions of ajii and bjb: they are ld 
exclusionary distinctions . Superposition first emerges at level 2 with ab via the distinction 
exclude vs. co-occur. 

25Since X is not the same as Ox, an occurrence X is meaningfulj in terms of senSors, X is a 
sensing of an externality x, not x itself. 
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This is a rather harder question to answer. To the above two concurrent ex­
clusionary processes we now apply the co-exclusion inference, whose opening 
syllogism is: if a excludes ii, and b excludes b, then a + b excludes ii + b (or, 
conjugately, a+ b excludes ii +b) ... . This we have just derived. 

The inference's conclusion is: and therefore, ab exists. The reasoning is that we 
can logically replace the two one-bit-of-state processes a, b with one two-bits­
of-state process ab, since what counts in processes is sequentiality, not state 
size, and exclusion births sequence (here, in the form of alternation). That is, 
the existence of the two co-exclusions a + b I ii + b and a + b I ii + b contains 
sufficient information for ab to be able to encode them, and therefore, logically 
and computationally speaking, ab can rightfully be instantiated. We write 8(a+ 
b) = ab = -8(ii +b) and 8(a +b) = ab = -8(ii +b). A fully realized ab is, we 
see, comprised of two conjugate co-exclusions, a sinejcosine-type relationship. 

We can now answer the man's question, Did anything happen? We can answer, 
''Yes, when the coin changed hands, the state of the system rotated 180°: ab(a+ 
b)ba = ii+ b." We see that one bit of information ("something happened") results 
from the alternation of the two mutually exclusive states. 

With the co-exclusion concept in hand, we can now add a refinement to the 
idea of co-occurrence. Recall that S is the space of all imaginable expressions 
in g. But, thinking now computationally, this means that they are all "there" 
at the same time! That is, S is the space of superpositions, of all imaginable 
co-occurrences of elements of g all at the same time; whereas G is the space of 
actually occurring (but still space-like) entities, which means no co-exclusionary 
states allowed. When things move from S to G, superposition is everywhere 
replaced by reversible alternation, ie. G is a sub-space of S. 

Co-exclusions, being superpositions, thus live exclusively in S, whereas co­
occurrences can exist in both S and G, though their objects are slightly differ­
ent. Co-occurrences in T-space have yet another flavor. Each of the transitions 
S -t G and G -t T is entropically favored. We now look at the former, the 
latter being the standard theory of quantum measurement. 

As a first example, consider the scalar distinction (1, i], an element of S, which 
is mapped to the vector a, an element of G, and therewith encapsulates one bit, 
cf. Table 5. (1, i] E S because both 1 and i must be simultaneously present if 
the idea of their distinction is to be meaningful. Thus, what is a superposition 
of 1 and i in S becomes an alternation between 1 and i in a E G. A degree of 
freedom has been lost. 

A second example: the co-exclusions (a+ b Iii+ b)l(a + b Ia +b) induce the 
formation of ab. What happens is that the superpositions in S represented 
by the co-exclusions - three of them - have been replaced by their actualized 
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alternations, (a+b ++ ii+b) ++ (a+b ++ ii+b) in G. 26 That is, the superpositions 
inS are replaced by space-like exclusions in G, which is, again, a reduction in the 
number of states. In the next step, this reversible alternation in G is replaced 
by before/after, that is, it becomes a time-like (irreversible) exclusion in 7. 

The overall movement of information is thus from superposition in S to space­
like exclusion ("alternation") in G to time-like exclusion ("before-after'') via pro­
jection/measurement in 7. Each of these steps increases entropy by (further) 
compartmentalizing information, which reduces correlation, ie. increases noise, 
which is entropy. 

The information that Shannon defined is namely time-like, and is exactly mod­
elled by a binary decision tree descent from root to leaf. In contrast, what IS 
does is to build that tree from the leaves (detailed co-occurrences like a+ b) first 
to ab, ie. IS( a + b) = ab, and from there up to the root abc . .. z. In doing so, it 
reduces the information content of S by turning its superpositions into exclu­
sionary distinctions in G, which in turn, at level 4, are projected into 3 + ld 
tauquernion spacetime. The Bit Bang explosion is much like the irresistible 
salesman who argues that owning one cow after the other is really just as good 
as owning two cows at the same time. (Although it isn't, as we know.) 

When we calculate the information content of G = \II, we are counting non­
Shannon information. And yet, the conceptual basis for this counting up of 
non-Shannon information is Shannon's time-like information, information you 
can use to locate and identify things in a space, cf. the binary tree descent! 
This is the "subtle paradox" mentioned in the first sentence of this section. 

We resolve the paradox by viewing the entropic expansion g0 --t g1 --t 92 --t 

9a --t 94 as the conversion of the space-like information in S and G into time-like 
information in 7-space- ebits, mass, 3d space, gravity, entropy, and time. That 
is, causal potential is converted into causal actuality, and it is in this conversion 
that the Shannon encoding of non-Shannon information is rendered meaningful, 
as namely Shannon information. 

The continuation of this entropically-favored process of increasing encapsulation 

0 0 0 0 0 
a ---+ ab ---+ abc ---+ abed ---+ ... ---+ abc . .. z 

would seem to lead to the conclusion that black holes are to be described by 
pseudo-scalars of grade 4n, where n is very large, and "4" because this is a grav­
itational phenomenon, and the algebra cycles semantically mod4 (and more 
subtly, modS). We are namely looking at (ie. inside) the interior of a gi­
gantic gravitationally resonantly bound particle with 2'1" dimensions. At this 

26Nole that the co-exclusion form sums to 0, and so holds no contradiction. 
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extremely high level of gravitational organization (read heavily entangled), ev­
erything is so intensely correlated with everything else that, in the limit, all 
entities become indistinguishable from each other. In this way, the stage is set 
for a new expansion. 27 

8. Cosmological Evolution 

The preceding section dilineated the information content of elements of the al­
gebra, and thereafter how these elements are stitched together computationally 
and mathematically (namely with co-exclusion >-+ o) to create ever more ac­
tualized structures. Left unaddressed however, is how exactly these algebraic 
elements come to be in the first place. 

Metaphysics aside, we rely on two pillars of support in this telling of this story: 

o The structure of the algebra itself, without questioning whether this is 
putting too much in by hand. 

• The entropic propensity, ie. the truth of the 2"d Law of Thermodynamics. 

These are the governing principles in what follows. 

The overall story arc is that the information creation via co-occurrence ( cf. 
the Coin Demo), which is both dominant and non-Shannon, can be sustained 
using reversible mechanisms. The result is an exponentially expanding space­
like information space, namely G = W. This information is then bled off by 
its conversion into its time-like form, which we experience as 1/.,M, V, the Big 
Bang, and its aftermath. 

The primitive mechanisms that contribute to the creation of bits of information 
are 

• Distinctions: scalar 1 vs. i, and (multi-)vector XY = -YX 

• Products, XY 

• Co-occurrences, X + Y 

27We note that the Pythagorean relationship B~ + B~ = (B1 + B2)2 for the total entropy of 
the merge of two black holes Bt,B2 (21) is satisfied by any two tauquernions so long as they 
anti-commute. Sec also the discussion of Zn arithrnetics in Appendix I. 
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The last of these dominates the information content of both S and G = ii' 
because the number of co-occurrences grows hyper-combinatorially. The two 
distinctions are clearly proto-bits. "Products" get their own line because, if 
co-occurrence is the steam locomotive, then products - being the generators of 
novelty - are the coal car, without a constant supply of which, the train will 
grind to a halt. This is detailed below. 

Since we are dealing chiefly with co-occurrences, all "information" is non-Shannon 
unless otherwise noted. We are dealing only with extant elements of S, that is, 
with the elements of G as so far constructed. Abusing combinatorial nota­
tion, we are generating the set { ({1

·";,';····})} of all the possible forms in G = 

{1, a, b, ... }. This generates E{;;,) - 1 = rC::) = 2n- 1 elements. 

The reason that the formula is y{,';.), ie. leaving out one possibility (m = 0), is 

that Void cannot be a party to a co-occurrence. This is because by definition, 
0 means "does not occur", in the sense that Void does not "happen", does not 
"take place", in either space or time, as opposed to the mis-understanding "not 
there at all". Thinking back to the Coin Demonstration, it simply cannot be 
performed when there is NoThing in the man's hand, but this does not deny 
Void's presence. 

We begin our construction with the scalars, G0 • These are Void >-+ 0 and the 
primitive distinction [1, i] that emerges from Void [12]. The scalars have no 
dimensionality but can represent a primitive distinction if one has two of them. 
Dimensionally, Void·>-+ 0 represents a point, and the two-valued distinction ±1 
is the prototype of a line. 

Including Void, G0 has three distinctions [~Void, ~1, •I] leading to lg3 = 1.58 
bits; counting just the two non-zero states, this represents lg 2 = 1.00 bit. 
These two different bit-measures express the difference between the space S 
of possibilities, and the space G of extant (in il') entities, ie. those that have 
actually been constructed out of the possibilities. 

The transition from G0 to G1 maps the scalar distinction [1,i] to a 1-vector, a. 
This is an entropically favorable transition, according to Table 5, because a has 
one bit less information than the scalars from which it is formed. This mapping 
reifies into an exclusion what previously was only a potential to be 1 or i. Both 
scalars and vectors are now present, and Table 5 shows that they always have 
the highest information content of all. 

The forms y{!) of G., which we might also write as y{{~•}), yield the set 

{1, a, 1 +a}, but <1(1 +a)= a, which we already have, so no novelty is generated. 

The expansion must therefore seek another route ... which is (to await) the co­
occurrence a+ b, wherein we imagine the parallel existence of many G1's (this 
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is all an idealization, of course). Once a and b co-occur, they can co-exclude, 
whence ab, a new entity, is added to G. This is the coal car feeding the steam 
engine: every time a new entity is added to G, the number of co-occurrences, 
the size of G, doubles. 28 

Note that even though the multiplication a+b t-+ ab is reversible (eg. a(ab) =b), 
information is nevertheless created when ab is created {2.17 vs. 1.17 bits). As 
noted in §7.1, what is going on is that bins - of possibility - are simply being 
visited. 

Addition (co-occurrence) is doing most of the work of the expansion- it's always 
entropically favored. But multiplication supplies a vital piece, namely the step 
from a + b to ab. This being a crucial step, we reason that ab has the same 
information content as a and b, so in multiplying the latter together, it's 1 x 1 = 1 
so to speak: we are simply combining things of the same measure and nothing 
is being "manufactured". Neve1theless, ab is still novel, so in the context of S 
and G and their basis in co-occurrences, we still harvest an information windfall 
from ab's appearance, because this gives ( entropically favored) birth to a whole 
new generation of co-occurrences. 

This may sound dodgy - something for nothing is always suspect - but the 
mathematics speaks clearly. It is non-Shannon {ie. space-like) information that 
becomes available via (though not because of) space-like rotation, G = IJl is 
expanding (because of addition), and there is no time-like context here. 

This reasoning applies to all co-occurrences and products, and thus the expan­
sion of IJl is a general free-for-all application of co-occurrence + and action x 
over and between all extant entities, biased in the general direction of entropy 
generation. But we are ahead of the story, and now must back up. 

Eventually, all the elements of our G., call it G'i = {1, a}, will have been 
generated, so we must await a co-occurrence with a new entity, call it b E G~, 
and we then can generate G'i + G~. Recall that co-occurrences always have a 
lower information content than the singletons composing them, so G'i + G~ is 
entropically favored. 

Once there is co-occurrence, there can be action: G2 is created by G'i x G~= 
{1,a,} x {1, b} = {1, a, b,ab} = G~b. Besides qbits, this produces, in particular, 
the high-information bivector ab, and thence lV / Z and neutrinos. 

Nevertheless, at some point, the combinatorial possibilities of G2b too will be 
realized, whence we await a co-occurrence with an entity belonging to another 
G, say G2b + G~, leading to the product G2b x G~ : 

28Strictly speaking, we should not count !-vectors and pseudo-vectors, the (~) and (;:) 
terms of the E, since we're counting co-occurrences, and these are singletons. On the other 
hand, including O(n) singletons has negligible impact on 0(2n). 
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G3bc = {1, a, b, ab} x {1, c} = {1, a, b, c, ab, ac, be, abc} 

With G3bc we get photons, electrons, quarks, protons, neutrons, mesons, gluons 
- all the familiar members of the Standard Model. 

Simila.r!y, G2b x G~d and Gt x G3bc together generate G:jbcd- giving us 1-l, M, V, 
3 +. 1 spacetime, mass, gravity, and entropy - at which point we leave quantum 
mechanics. G4 n x G4 n describe higher-order gravitational structures. 

However, we have again gotten ahead of our story. In generating G2 from 
G1 x Gr, we can further imagine the co-occurrence and subsequent product 
of several (say four) G1 's (over, say, a,b,c,d), which will then produce the six 
bivectors ab, ac, ad, be, bd, ed. 

Once again we recall that co-occurrences always have a lower information con­
tent than the singletons that compose them, so entities like ab + ed will again be 
entropically favored. These are, of course, T's ("*Bell/Magic states and ebits), 
and so we see that there is an entropically favored route to 1-l and M. [The 
same applies to xy+xz (electrons) and x+yz (quarks).] Since, all else seeming 
equal, there are three times as many M states as 1-l states, the tendency here 
will be for the formation of normal matter. 

Similarly, G1 + G3 will produce co-occurrences like w + xyz, the atoms of dark 
matter, so V is also an entropically favored outcome. Note that with the ex­
ception of 16'D,., dark matter will be formed preferentially to normal matter, 
cf. 5.53, 6.87, 5.53 versus 15.9 in Table 5. [Appendix II continues this discussion of 
combinatorial expansion.] 

In both cases, the expansion is hyperexponential, and, being prior to the actual 
formation of 3+ 1d spacetime via the T's , is also not limited by the speed of light. 
Thus this combinatorial expansion presumably models the initial inflationary 
episode of standard cosmology. 

Summarizing the cosmological development, both graphs in Figure 1 show the 
two major pathways to space/mass creation: upward on the left, the creation 
of 3 + 1d space and normal matter, 8(1-l U M) =abed, via the pathway o(o(a + 
b)+ o(c +d)) =abed; and upward on the right, dark matter, via the pathway 
o'D = o(d + o(c + o(a +b)))= abed, but then also for the latter, a "back door" 
down to 1-l U M via 'D~ , V~, and abc'D (cf. §6). 
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Figure 1: Two equivalent graphs of normal & dark matter creation. Growth (o) is up­
ward, as the ambient energy falls. The dotted lines symbolize the indirect tauquernion 
creation from dark-dark interactions. 

9. Summary and Conclusions 

We have a very promising candidate, the tauquernion T- forms 

for the long-sought connection between quantum mechanics and 3+ 1d relativity 
theory. This connection, which creates space, matter, and time, takes the form of 
a new, inherently entropic, way to describe 3d space. The conjugate forms of the 
Higgs bosons 1i presumably correspond to the dual polarizations of gravitational 
waves, and the members of M are the precursors of the unit mass abed. 

The overlap of 1i U M and the entanglement states allows the pa!titioning of 
our understanding of matter and space into two complementary views: The 
tauquernion view focuses on the formation of matter, 3 + 1d space, and gravity; 
whereas the the Bell/Magic view focuses on how the space and the matter all 
interconnect to form the whole. In hindsight, these two functionalities - the 
formation of structures and their interconnection - surely do lie best on the 
very same foundation - which turns out to be the largest even sub-algebra of 
Y4 = {1, ab, ac, be, ad, bd, cd, abed}. But that's hindsight. 
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A near cousin V of 1l U M, the largest odd sub-algebra of g 4 , 

offers a uniquely believable candidate for dark matter that also connects to 
1l U M via secondary 'T -based connections. Our analysis predicts three types of 
dark structure, one nilpotent, one space-like (in that these square to quaternion 
triples), and one material (being 8'h roots of unity). This latter has two forms 
in the proportion 16: 80, one (20%) heavy (15.9 bits) and one (80%) light (5.53 
bits). 

As this last sentence indicates, we have calculated the information content of 
every expression in go, gb g2, g3 and g,,. The classification system we developed 
to do this is based on the observation that an algebraic expression that picks 
out a single row of its "truth table" uses the most algebraic terms in order to 
provide this most discriminating specification. The sign-counts (#+'s, #-'s, 
#D's) associated with an expression, which counts are as well invariant over 
symbol substitutions, fit this observation exactly. However, because many quite 
different expressions in g4 have the same count-signature, giving misleadingly 
high bin populations, our final classification algorithm therefore uses both these 
counts and the number of (non-scalar) terms in the expression - a Euclidean 
length - to choose a bin. Thus our binning algorithm compactly represents both 
the state and the algebraic complexity of any expression. 

We explicitly iterated through all sign variants of all expressions in g1 (2 bins), 
g2 (4 bins), g3 (14 bins) and g4 (86 bins for 43 million expressions) in order 
to calculate the exact bin populations for each such signature. These in turn 
yield the highest bit value for the least likely bins ( eg. m-vectors and single-row 
specifiers) and the lowest bit value for the most likely bins (eg. large concurrent 
expressions). 

The biggest surprise was that primitive concurrency (addition of vectors/m­
vectors) is easily the primary mechanism for information creation. While mul­
tiplication's transformative power is, as we saw (§8), necessary to maintain a 
supply of novel entities, the hyper-combinatorial state expansion fostered by 
additive combination of said novelty vastly exceeds the latter's numbers. The 
potential information so created is ultimately released as energy according to 
the relation 1 bit = 4 Planck areas / ln 2. 

As the state space expands from g1 thru g4 , the bit value of an individual 
m-vector grows from 0.58 to 18.9 bits due to the explosion in the size of the 
state space. This Bit Bang represents real bits that are released as real energy, 
the energy that fuels the Big Bang when converted to the (statistically likely) 
Higgs and mass states at 7.08 bits. Thus, for example, two bivectors at 18.9 
bits each, combined concurrently (eg. yielding a 'T), yield a co-occurrence with 
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an information content of 15.1. This (probably) entangled T-state persists due 
to irreversibility, and therefore has increased likelihood of forming (with two 
others) an element of 1l U M, with an ensuing huge further entropy increase to 
7.08 bits. Globally and locally, the· expansion process is monotonic due both to 
the irreversibility of the entangled Bell/Magic states and the entropic expansion 
in general. 

In the standard QM story, the quantum potential \II is the home of superposi­
tions, and the transition from superposed to definite states lies at the heart of 
the quantum mechanical world. Since in the same standard story there is no 
mechanism - it being entirely statistical in content - no finer distinctions were 
needed. Having with our computational interpretation introduced the missing 
mechanism, we were able to see the distinction between what can imaginably 
be (S, superpositions), versus what can potentially exist (G = w, alternations), 
versus what actually is, T · G r+ 3 + 1d. The distinction between superposition 
and alternation in turn allowed the formulation of a coherent story of entropic 
transformation from S to G to our own 3 + 1d spacetime. Our information 
content calculations, besides being exact - a welcome rarity - seem consistent 
with both observation and standard theory, and as well fill in many details of 
what happens before the Big Bang bangs. 

It seems appropriate now to remind the reader of the hierarchical structure of 
the algebra, and what it might mean when extended beyond Q4 • This struc­
ture has its foundation in the fact that the algebra's atoms - a, ab, abc, ... -
whose successive squares are the +--+ sequence of powers of i, are also "pure 
frequencies", since they are the dimensions onto which Parseval's Fourier decom­
position projects, and simultaneously they also are oscillating co-exclusionary 
computations. Thus, in a sense, the Q3 particle tables in §6 and Appendix I 
and their exact fit to the Standard Model are inevitable. At the same time, 
these m-vectors grow (via&, cf. "symmetry-breaking") with the size of min en­
coded complexity, such that one can only think that the detailed construction of 
hydrogen, helium, etc. is within reach, with molecular bonding and molecules 
next. Huygens' principle of secondary sources is a guide in this endeavor. 

We note that the discovery of the tauquernions lends strong support to back­
ground-independent theories [4,9,13]. The tauquernion foundation for 3 + ld 
- via both the Higgs mechanism and entanglement - means that cosmological 
theories need no longer feel forced to assume the prior existence of 3+ 1d, as 
does eg. string theory. Rather, the availability of the tauquernions should 
encourage the development of background-free theories, which are for the same 
reason more conceptually satisfying. 

Finally, we note that the Coin Demonstration delivers a decidedly non-computable 
bit of information (in the Turing sense), and would therefore seem to constitute 
the non-computable element sought by Penrose [18] and others. 
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All in all, we are very impressed with the deep correspondence of known and/or 
physically meaningful computational algebraic structures to their calculated in­
formation content, and of both of these to the physical phenomena they are 
meant to model. Even the subtlest processes seem almost to have been antici­
pated. Together with the present computational interpretation, the power and 
elegance of the Z3 geometric algebra can simply not be denied. 

The minimalism of our Z3 dialect of geometric algebra has effortlessly and in­
credibly parsimoniously exhibited, via the tauquernions T, virtually all the 
desired and necessary structures, seamlessly interwoven, to plausibly connect 
quantum mechanics to 3 + ld space-time, both its creation and its content. As a 
dividend, we also get a detailed structural theory of dark matter. The complete 
overlap of the T and entanglement spaces, making entanglement the mecha­
nism of gravity, is a wonderful surprise. The information-theoretical analysis 
supplies a both detailed and exact ''null hypothesis'' backdrop for experiments. 
Hopefully, the more detailed formulation of this picture in unchained Z, and its 
mapping to the body of general relativity and IR, will be straightforward, but 
nevertheless definitely a matter for professional physicists. 

In this connection, we think it entirely reasonable that physicists expect, and 
even require, that the algebraic and interpretive framework that we have in­
troduced provide the actual mechanisms for the physical effects we observe. 
Call this information mechanics. After all, we have presented a computational 
theory, and mechanism - what must actually happen - is the soul of the com­
putational metaphor. 
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Appendix I 

The Standard Model in Z3 Q3 

The Z3 Q3 Standard Model presented in this Appendix is in support of the 
preceding text, which provides algebraic context and other necessary details 
not found here, ie. this Appendix is not self-contained. 

Our knowledge of the Z3 Q3 algebra has a strong empirical flavor, born of the 
fact that it takes only about eight seconds to search the entirety of g3 {6581 = 38 

elements, versus days to weeks with Q.1), so instead of isolating abstract groups 
and proving theorems about their properties and inter-relationships, we just 
calculate and display all the expressions of interest. We can assure the reader 
that this Appendix rests on a thorough census of the forms in Q3 • 

To the reader who would see actual abstract group elements paired off with ele­
ments of the algebra in accordance with the well-tested tenets of quarkology, we 
must plead ignorance. Thus the finer details of particle types and interactions, 
which all work out very nicely, are the algebra's hand at work - we have not 
attended to such things, nor needed to. While the presentation in the following 
pages more or less exhausts our knowledge of the subject, given the precision 
with which the algebra nails all the categories, and their details, plus the iso­
morphism between Q3 and the Pauli algebra, we trust that any discrepancies 
will turn out to be technical and non-contradictory. 

In the classifications that follow, the general reasoning is: 

• Z3 g is an algebra of distinctions, and every singleton xy, xyz, wxyz, ... 
expresses a logical xnor, the negative of xor. Either way, it's the same/ dif­
ferent distinction that is effected, and being in Z3 = {0, 1, -1} ensures a 
binary classification over ±1 {since never x = 0). This means that the Z3 

algebra implicitly classifies all ofits elements as same/different in intricate, 
yet minimal, combination; eg. unitary elements possess much sameness. 
This is another way to view an expression's information content. 

• Stable particles U, V must be unitary, U 2 = V 2 = 1, whence their projec­
tors are the idempotents -1 ± U, -1 ± V, whence bosons are the nilpotents 
w that satisfy (-1 ± U){-1 ± V) = (-1 ± U)(w){-1 ± V), thus indicating 
a causal sequence. Nilpotents and idempotents correspond, respectively, 
to the wait() and signal() synchronization primitives. 

• The other classifications then follow from inner consistency and the Stan­
dard Model itself. 
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Excluding 1-vectors, the only three unitary forms in Q3 are x + ·y + xy, xy + xz, 
and x + y + z + xy + xz, and have been found to correspond, respectively, to 
neutrinos, electrons, and protons {neutrons= x-yzprotons). 

I Name I Form I Vector (g2) I Signatur-e Bits 

" a+b+ab [~ ~ ~o] (0, 1, 3), 3 1.75 

"" 
a~b~ab [~~O~] " " 

Vr ~a+b~ab [ ~ 0 ~ ~] " " 
1. Neutrinos: E = a+b~ab I [O+++] " " 

" ~a~ b~ab [+++OJ " " 

"" ~a+b+ab [+ + 0+] " " 
Vr a~b+ab [+o ++I " " 

E = ~a~b+ab [0 ~ ~ ~] " " 

Although there are 23 = 8 sign variants here, versus the Standard Model's six 
neutrinos, it turns out that in each half of the table, a fourth neutrino can be 
expressed as the sum of the other three. Indeed, this provides a framework for 
the mutation of one neutrino type into another, cf. ''the solar neutrino problem". 

We tentatively identify the nilpotent W and Z bosoos as being of the form 
x+x-y {our only 'tentatives'), and one can imagine the sum (x~x-y)+(-y~x-y) = 
x + 'Y + x-y, a neutrino. The forms • = ±1 + x + x-y, ·t3•6 = 1, are also relevant. 

Electrons can be formed the same way: e = xy + xz = (x + x-y) + (x + xz). 

I Name I Form Vector (g3) I Signature I Bits I 
e ab+ac [~00++00~] (2, 2, 4), 2 4.70 
e ~ab~ac [+00~~00+] " " 
e ab~ac [0~+00+~0] " " 
e ~ab+ac [O+ ~oo ~+OJ " " 

11 ab+bc [~0+00+0~] " " 
2. Electrons: 11 ~ab~ be [+0~00~0+] " " 

11 ab~bc [0~0++0~0] " " 
11 ~ab+ be [0+0 ~ ~0+0] " " 

T ae+be [~+0000+~] " " 
T -a.c- be [+~0000~+] " " 
T ae~be (00~++~00] " " 
T ~ae+be [00+~ ~+00] " " 

3. Photons: ±x±-y±z. There are four pairs of 2 states 7, 7 ', which we take to be 
polarizations. Note that the electron projector ~ 1 +xy+xz factors as x(x+u+z ); 
and that 77' = 1±(x-y+xz). Also, ~1+x-y+xz = (x-y+-yz+zx)(x-yz)(x+-y+z). 
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4- Mesrms, Gluons, and EjM. 

Like electrons, mesons too can be constructed via a 2-sum of the nilpotent x+xy 
form, and gluons with a 3-sum. The sums that are factorable are nilpotent, and 
those that are not are roots of unity. We note that quarks have the form x + yz, 
and so mesons can easily consist of two quarks via rearrangement, cf. the first 
two items below: 

• Nilpotent mesons: {X I X= (x+xz) + (y+yz) = (x+y)(1+z) & X 2 = 0} 
(24} = (x+yz) + (y+xz) 

• Massive mesons: {X I X= (x- xz) + (y + yz) & X 2 = ±xyz} 
(24} = (x+yz) + (y-xz) 

• Gluons (48}: {91 9= x + y + z + xy+ xz +yz & 9 2 = ±xyz} 

• Electro-magnetic field: {E IE= (x + y + z) ± xyz(x + y + z) & E 2 = 0} 
(16} = (1 ± xyz)(x + y + z) 

Note that xyz(x+y+z) = xy+xz+yz is the 3-space quaternion triple associated 
with the photon x + y + z, while ±xyz is the charge carrier. The last two items 
have the same form, differing only via charge vs. nilpotence. All four are eigen 
forms of xyz. 

5. Q11arks 

The quarks are the only case where the Q3 algebra at first seems insufficient, in 
that while the x + yz form correctly exhibits three families of 2 x 2, with spin 
(±xy,±xz,±yz) and charge(±~ or±~ on x,y,z), in doing so it seems to use 
up all of its information carrying capacity, and then some, and so be unable to 
express as well the three colors quarks also can have. 

It is appropriate therefore to enquire how a single 1-vector like x might even 
be said to carry both ±~ charge and a color designation, especially since it 
carries only one bit of information. The answer is that x itself carries only the 
± distinction, one bit. The"~" is our imputation of x's contribution to a larger 
pattern, and indeed the ~ + ~ + ~ = 1 charge-addition business is clearly the 
space-like non-Shannon information contained in a 3-co-occurrence, cf. the Coin 
Demonstration, where the answer to the question "is there electro-magnetism" 
is answered when the third coin is revealed. 

Similarly, "color'' is our way of distinguishing x from y from z, which is mean­
ingful only when > 1 are present. Since quarks and their colors appear only 
when there are either two (mesons} or three (hadrons, gluons) quarks present, 
so then also are the requisite co-occurring x, y, z's present. So we conclude that 
it is permissable to associate with each of x, y, z both a charge and a color. 
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We can encode the "colors" red, green, blue (r, g, b) as 

r 
t 
a 

g 

t 
b 

b 

t 
c 

r+g 

t 
a+b 

r+b g+b r+g+b 

t t t 
a+c b+c a+b+c 

Thus both charge and color are emergent, co-occurrence-based, non-Shannon 
distinctions. The finishing touch is that a particle and its anti-particle must 
sum to zero, including both charge and color. We then get the following table 
of quarks: 29 

I Name I U D u jj 

Form a+bc -a+bc -a-bc a-bc 
Charge +~ 1 2 +k -, -, 
Color ,. r ,. ,. 

I Name I C s c s 
Form b+ac -b+ac -b-ac b-ac 

Charge +~ -~ -~ +~ 
Color g g !I g 

I Name I T B T B 

Form c+ab -c+ab -c-ab c-ab 

Charge +~ -t 2 +~ -, 
Color b b b b 

6. Hadrons; Protons and Neutrons 

g3 contains exactly three compound unitary forms X such that X 2 = 1. These 
are x + y + xy = neutrinos, xy + xz = electrons, and now the largest of these, 
the 96 hadron forms x + y + z + xy + xz, which square to either 1 ± xyz or + 1, 
48 of each. Each 48 divides into three groups of 16, depending on which of the 
three possibilities xy + xz occurs. By inspection, in the X 2 = + 1 half, there 
are three sub-families, made up from the three families of quarks. Of the 16 in 
one such, the 8 + 8 are each two photon polarizations 1 and 1', the 8 dividing 
as 4 + 4 = 2 x 2 + 2 x 2, these being the 'conjugate' forms 1 ± (xy + xz) and 
1± (xy- xz), and 1' ± (xy + xz) and 1' ± (xy- xz). 

29Exccpt for U and D, the entries in these tables were not assigned with any particular 
knowledge of how they are to correspond to real particles. 
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We saw earlier how the mesons can be constructed from two x + xy's, and in so 
doing deftly confine the quarks so formed to a minimum presence of two. The 
same construction can be applied to the hadrons, which are then the sum of 
three x + xy's, rearranged to make three x + yz's. 

In particular, protons are UUD and neutrons UDD, that is, p = 2U + D and 
n = 2D+U. Subtracting these, p-n = p+n = 2U +D - 2D-U = U +D, ie. 
"UD", a quark and an anti-quark, ie. a meson. Clearly, n- p = "UD", which 
symmetry is appropriate for an exchange particle like a meson. And indeed, the 
quark model stipulates that mesons be (the sum of) a quark and an anti-quark. 

Unfortunately, in our Z3 algebra, 2U = (j, so "count to 2" also means the "anti" 
distinction, and thus we cannot express the UUD vs. UDD distinction as things 
stand. Fortunately, we can move to Z5 = {2, i, 0, 1, 2} and still remain in Q3 . 30 

Being now able to count to 2, the quark model is straightforward. Let U = a +be 
and D = -a+ be. Then, with Z5 arithmetic, 

p = 2U + D = 2(a +be)+ (-a+ be) 
n = U + 2D =(a +be)+ 2(-a+be). 

whence 
p- n= (2a +2be- a +be)- (a+ be- 2a+ 2be) 
= a+3be- (-a+3be) =2a= (a+be)+(a-be) 

U+D "UfJ" 

just as required; and we note that our proton p = UU D has charge ~-! = + 1 
and our neutron n = UDD has charge ~- ~ = 0. 31 

The success of the shift from Z3 to Z5 to clarify the quark model encourages the 
thought of Zr for Q4 • This would emphasize the 0 mod 4 cycle, which expands 
into itself: in the hierarchy of these algebras, they all will be Q0 mod 4 because, 
abusing notation, o(Qomoa4 + Qomoa 4 ) = Qomod 4. We believe this to be a black 
hole structure in the limit. 

But in the first instance this leads to Q8 , octonions, and the exceptional Lie 
group E 8 , well-known to string theorists. Perhaps Z11 = {5, 4, ... , 0, ... , 5} 
is the right lens for Q8 . 32 The primes 3, 5, 7, 11 appear initially for their 

30 We defer the interesting foundational question raised here, and instead take the pragmatic 
view that while Nature knows what it's doing, we need help focusing, and the shift to Zs keeps 
the focus sharp. 

31 It is an interesting exercise to examine how the Z3 encoding of p {which of course must be 
equivalent) compensates for its inability to count to two by adding in extra and/or intertwined 
distinctions. Thus withp = a+b+c+ab+ac = a+{b+ac}+ (c+ab), two (non-U, D) quarks 
appear, and the a-distinction is decisive. 

320n the other hand, we are not fans of octonion multiplicative non-associativity (11). 

183 



symmetry around 0, but as well, their self-identifying property correlates with 
the idempotent forms ±1 ± x 1x 2 .•• Xm of the corresponding level m, which 
in turn are the similarly self-identifying computational primitives signal(event) 
[11]. 

Returning to the Z3 algebra, we note that the proton form is also the sum 
of a photon and an electron. Consider now, in idempotent form, an electron 
e = -1+xy+xz = x(x+y+z) = x7, and a proton, p = -1+(x+y+z)+(xy+xz), 
which factors as (x + y + z) + x(x + ·y + z) = (1 + x)(x + ·y + z). Then 

ep= (-1 +xy+xz) x (-1 +x+y+z+ xy+xz) = -1 +xy +xz = e 

= x(x + 'Y + z) x (1 + x)(x + y + z) 

= (x + ii + z)x x (1 + x) x (x + u + z) 

= (x + jJ + z) X (1 + x) X (x + y + z) 

= (x+j]+z)(1+x) x x(x+y+z) 

= (x + jJ + z)(l+ x) x (x + iJ + z)x 

= (-1 +x+j]+ z +xy+ xz) x (-1 +xu+xz) 

=p'e and pe=e'p=p 

where we note that the phase of the photon in p has changed from x + ·y + z 
to x + ·jj + z in p'. So, even though the state ep = p' e = e is nominally 
fixed (since the idempotents are irreversible) and officially static- it's what has 
happened and no more has happened yet - we see [tracing the movement of x] 
that there is a natural, reversible, electro-magnetic oscillation, or if you like, an 
indeterminacy of state, in the electron-proton interaction that is consistent with 
our identification of the photon, electron and proton forms. 

Finally, the reader should note that summing, using which we have here de­
scribed the build-up of the Standard Model's structure, ie. co-occurrence, is 
the entropically favored pathway for combining terms. However, the actual ex­
pansion is much more complicated than merely summing x + xy's as we have 
done for expository purposes, which is, rather, simply a limited application of 
a spectral basis. 33 

33The general existence of a spectrat basis for g is an open question. 
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Appendiz II 

The Combinatorial Hierarchy 

[Continuing from the end of §8:] 

There is one last point we wish to make concerning the generation of Gi+J from 
G,xG1. Let A= {1,a}, whence we are in G1 • A-space is ±1±a '* 22 = 4 = 221 

states. Now let B = {1, b}. Then 

Ax B = {1,a,b,ab} 

and the resulting space is of size 24 = 16 = 42 = 222
. The next step is 

{1,a}{1,b}{1,c} = {1,a,b,c,ab,ac,bc,abc} 

which is of size 28 = 256= 162 =223
• Next is {1,a}{1,b}{1,c}{1,d} = 

{1,a,b,c,d,ab,ac,bc,ad,bd,cd,abc,abd,acd,bcd,abcd} 

which is of size 216 = 2562 = 65538 = 22'. 

The sequence of space-sizes increases as the square, 4 -+ 16 -+ 256 -+ 2562 , 

because of course 22" = 22"-'22"-'. At the same time, the number of elements 
in these spaces (a subset of S) is growing even faster, and these two sequences 
are related. Table 6 shows the generation process, and the intertwining of the 
two sequences is visible in the related powers of 2 that appear. 

In the early (Z2) analysis [1] of this construction - the Combinatorial Hiemrchy 
- it was understood in terms of the state vectors of one level being stacked to 
make square matrices, which matrices had to be capable of mapping the resulting 
next-level space onto itself. The intriguing aspect then is that while the matrix, 
being a stack of basis vectors, exists for n = 1, 2, 3, at n = 4 the number of 
co-occurrences explodes, and the ((256}')2 = 232 basis vectors are completely 
swamped by the 2127 co-occurrences they should map among. That is, 4 covers 
3, 16 covers 7, and 256 covers 127, but then it's over. So the construction halts, 
or must begin anew, or, at least, something new bas to happen, seemed to be 
the message back then. 
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-00 
0\ 

I Lvl = n = generators-t I G1 G2 G3 G4 ] 
-

#terms 21 = 2 22 =4 23 = 8 24 = 16 

Pull state contents G ±1±a ±1±a±b±ab ±l±a±b±c± ±1±a±b±c 
±ab±ac±bc±abc ±d± ab ± ac± be ,, 

±ad±bd±ed±abc 
±abd ± aed ± bed ± abed 

[G[ = 22• = (22·-
1 f I 221 = 22 = 4 I 222 = 42 = 16 22' = 162 = 256 I 224 = 2562 = 65538 

Occurrences Sa = E(k) 
1 ' 

E{') = 3 
1 ' 

E{') = 7 
1 ' 

EC} = 127 
1 ' 

E(127) = 2127 -1"' 1038 
1 ' 

I 
I {l,a,1+a} I {a,b,a+b..!..,ab, I {a, b, c, ab, ac, be, I {a, b, c, d, ab, ac, ad, be, bd, 

a+ ab,b+ ab,a+ b+ ab} a+ab,a+ac, ... } cd,a + ab,a + ac,a+ ad, ... } 

Table 6: The sequence 3, 7, 127,2127 - 1 is the Combinatorial Hierarchy, CH [1,2]. 



[Three brief comments: (1) Sa is that part of S that corresponds to G's al­
ternations; (2) the bottom two rows of the table show only + variants because 
the signature collapses all sign variants to the same bin; and (3) the base of 
the combinatorics, 2-ary distinctions, is the one that generates the most struc­
ture: 3- and 4-ary distinctions cut off sooner, and 5-ary doesn't even get off the 
ground [1].] 

The present (Z3) perspective sees something new: the line that is crossed is the 
one that separates localizable effects from distributed ones, ie. weak, strong, 
and electromagnetic from EPR and gravity. Either way, the cut-off occurs with 
consistent and physically meaningful interpretations, and it seems clear that 
the two instances of the CH (:1':2 and Z3 ) are both isomorphic and being imbued 
with the same physical import. 

Finally, the observations that 3 + 7 + 127 = 137 "' ~' a being the fine structure 
constant, and that 3+ 7 + 127 +2127 "' 1038 roughly approximates the electromag­
netism : gravity ratio, plus the above-described interpretation, led Bastin and 
Kilmister to refine this purely combinatorial approach to ~- Their most recent 
result [2] calculates this to 137.036011393. vs. the measured 137.035999710(96). 
We note that Bagdonaite et alia. report [4] that the proton-electron mass ratio 
has not varied in the past 7 billion years. 
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In Memoriam 

Parallel with Alan Turing's well-known bio-computational interests, Ted Bastin (and his col­
leagues Frederick Parker-Rhodes, Clive Kilmister, and John Amson) and Carl Adam Petri 
(and his colleagues in Germany) were the first (to my knowledge) to devote themselves to a 
thorough-going computational understanding of physical reality. One can rightly say that my 
work has partaken of both of these efforts. Ted, holder of PhDs in both mathematics and 
physics from Cambridge University, died on October 15, 2011 at the age of 85. He was very 
ill when the preceding March I sent the emaiJ below, circa two weeks after the discovery. 

From: Michael Manthey 
Date: Tue, 22 Mar 201115:18:19 -0600 

Subject: 2 & 3 -> 3D @ lvl 4 ! 
To: ted.bastin@mistral.co.uk 

Dear Ted-

I have found something that I thought you would like to know about, if you still care 
about such matters. Namely a unique origin for 3D at level four, BUT *surprise*, the 3D 
space is *dissipative*, ie. any motion in that space costs. So the entropy is built in! The 
3D-ness is just like the quaternions, except that the elements are all irreversible, and the 
11 unit element11 is the idempotent. I have dubbed these things 11 tauquernions11 ! 

In my usual Clifford algebra notation where, xx=1 = yy, and xy = -yx, etc: 

Let X = ab+cd, Y = ac-bd, Z = ad+bc. These are the epr operators that Doug Matzke 
uncovered in his thesis. It turns out that 

XY=Z, YZ=X, XZ=Y 

and XY = -YX 

XYZ = -ZYX, 

YZ = -ZY XZ = -ZX 

and 

and {X+Y+Z)"2 = (ab+ac+ad+bc+bd+cd)"2 = 0 

which latter is likely the Higgs boson. The triplet X,Y,Z is unique in the algebra, so each 
quantum mass unit 'abed' has its own personal 3D axis system. Such units must now be 
inter-connected to form the space. 

Notice that what we have in X+Y+Z is *not* two sets of quaternions, but rather one set, 
plus a photon a+b+c: ab+ac+bc + d{a+b+c). 

So the emergence of the 3D is *both* at level two, as you have always argued, but as 
well, when the elements of this level, expanded to contain all 6 level two items of a 4 
level system, these six are grouped *again* in three's, two by two, to yield the 3D space 
(X,Y,Z). [not a sentence!] 

I haven't shared this with hardly anyone yet, so please- this is just for you. 

My very warmest regards, 

-mike 
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Electro-Magnetism Is 

A Fundamentally Fractal Fibonacci Fourier Field 

by 

Michael Manthey 
manthey@acm.org 

May-June 2013, July 2014 

Abstract. We offer a purely computational and combinatorial explanation for Coldea 
et a/.'s 2010 report of having measured the golden mean in a quantum system. Our 
method employs the roots of projectors (in the discrete and finite geometric alge­
bra ~s.o) to capture both the dimensionality (3+ Jd) and the detailed structure of the 
electro-magnetic field, including Majorana fermions (with many details). The pat­
tern of growth as the field expands from its source displays the Fibonacci sequence 
F = 1, 1,2,3,5, ... , where lim IJpf = rp, the golden mean. The Fibonacci sequence and 

11--)-oo I 

the golden mean are thus guiding principles at and from the very root of our universe. 

Keywords: Fibonacci, golden mean, distributed, self-organizing, topological, computa­
tional, combinatorial, hierarchical, fractal, systems, Fourier, Parseval, coordinate free, 
geometric algebra, tauquinion, tauquemion, enquernion, entangled quatemion, Majo­
rana. 
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0. Introduction - Quantum Systems Are Distributed Systems 

A long-standing interest in computer science is how to define and construct distribmed 
systems- systems consisting of many more-or-less independent asynchronous compu­
tational processes distributed over a number of hosts, that carry out coherent system­
wide computations with little or no central coordination. Due to their complexity, there 
is furthermore much interest in making distributed systems that are self-organizing. 
After all, Nature is unboundedly complex, and we can't write code for every eventual­
ity. 

Atoms, crystals, beehives & anthills, ecologies, weather systems, indeed all the works 
of Nature are such distributed systems, but despite their ubiquity and familiarity, the 
fundamental principles governing their design and operation are subtle and elusive. 
It's as if the whole universe were running on an invisible global operating system, one 
whose goals are namely (like any good operating system) to get everything done, and 
to be invisible while doing so. 

In particular, quantum systems are distributed systems, and in this paper we apply our 
self-organizing distributed system analysis tools to Coldea et al's finding [1,10], and 
expose its underlying computational mechanism. 

Our algebraic representation of computation- using the real geometric (Clifford) alge­
bras Wn,o = Wn - shows that the defining property of distributed systems is that they are 
wave -like, in that, conceptually, a wave is everywhere ... and yet, simultaneously, 
not in any one place in particular. Being wave-like means that distributed systems 
are space-like, viz. rotation around a circle, the plane and not the line (= individual 
sequential processes). 

Sequential processes, such as those generated by typical programs, are, in contrast, 
time-like. These (so-to-speak) wend their way through the above "distributed space", 
a Ia relativity theory's reference frames. We have little more to say about sequential 
processes here, but see [6]. 

The various special properties of our algebraic representation of distributed computa­
tion- its discreteness yields combinatorics and structure, its graded hierarchy collapses 
structural complexity, the tauquinions (see below) specify field structure, and more -
allow us to address the phenomenon observed by Coldea et al. in a novel manner. 

The computational interpretation that we place on our algebra is simple: concurre/11 
processes - bei11g illdependent - are considered to be ortlwgonal to each other. '1\vo 
concurrent !-bit-of-state processes a,b are written as a+b, and it turns out (unobvi­
ously from the present explanation) that the ensuing multiplicative anti-commutativity, 
ab = -ba, exactly tracks everything that happens (bit by bit, as 'twere) when two such 
processes are co-present. We thus build more complex processes (like ab) from these 
1-bit primitive processes; that is, every expression in the algebra is either a process or 
built from same (and some expressions are more interesting than others). 

We draw the algebra's scalar coefficients from Z3 = {0,1,2} o-+ {0, 1,-1} for nine 
reasons (so far): 
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1. The binary feel of ±1 is useful, eg. it makes ab into an xor (at the scalar level), 
and dovetails nicely with information theory's requirements; 

2. Z3 = {0, 1,-1} means 110 counti11g, thus subverting sequentiality at its very root. 
Counting is replaced by simple disti11ction: same or different. Structure comes 
from the distinction co-occur/exclude on process states [7, §7.2]; 

3. Generality requires the simplest possible atoms - 1-bit processes; 

4. Zero no longer wears two hats- Void and "the opposite of 1" - as it does in the 
usual~= {0,1} binary system; 

5. The introduction of a minus number into the basic algebra (versus~) 1 makes 
the transition to geometric algebra's vector world easy; 

6. Geometric algebra's various physics-relevant isomorphs (eg. the quaternion, 
Pauli, Grassmann, and Dirac algebras), when expressed in the extremely min­
imal Z3 algebra, get a very tight fit, eliminating most questions of correct inter­
pretation; 

7. This same minimality makes exhaustive searches ofW3 and W4 possible, and such 
searches are our main source of data, eg. for entropy calculations [7]; 

8. The extreme minimalism imposed by Z3 promotes the exhibition of much sym­
metry that is implicit and hidden in the turmoil of multiplicities of identicals that 
one finds in larger number systems; 2 

9. Since physical three-ness is both common and deep (three spatial dimensions, 
three particle generations, three quark pairs, etc.), the match with Z3 further 
focuses the algebra's precision of expression. 

Further discussion of the algebra appears below. 

Finally, because our analysis is purely combinatorial, over a universe of arbitrary pro­
cesses, it is independent of any particular physical theory. 

0.1 Earlier Work 

This paper is logically an addendum to [7], in that it follows directly from, and fits 
directly into, this prior work. In that work, we identified a novel set of isomorphs 
't'= {ab-cd,ac+bd,ad-bc}, dubbed TauQuernions, to the classical quaternions 
Q = {ab,bc,ca}- the very definition of 3d space. The tauquernions are novel not only 
because they are new on the scene, but rather, especially, because they are time -like. 

That is, tauquemions describe 3d space in exactly the same way quaternions do, but 
while (ab}4 = + 1, one gets (ab-cd}4 =-!-abed for the corresponding tauquernion. 3 

1 How do you want your~ negatives- sign-magnitude (oops, mi11us zero); l's complement (oops, two 
zeroes), 2's complement (huhhh?1) ? It's hard to think of any of these as direct representations of anything 
physical. 

2Coldea eta/: "Our results demonstrate the power of symmetry to describe complex quantum behaviors." 
3Note that (ab)4 = +1 andab= -ba together imply that ab ~ .;=T, the imaginary unit i. 
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(-!-abed?= -!-abed is idempotent, just like +1, so we're in a dual algebra ... 
and in that dual place, "+ 1" = -1 -abed is also a projector, a measurement operator. 
That is, itis time -like, so when 3-space is constructed using tauquernions, the quater­
nions' 3d becomes 3 + ld automatically, with the tauquemions' irreversibility showing 
up as global entropy growth. 

Applying tauquemions to the construction of relativity theory's 3+ ld world of space, 
time, gravity, mass, and entropy yields a very good fit. Furthermore, the tauquernions 
are also, it turns out, the Bell and Magic entanglement operators of quantum mechanics 
[8], leading to the conclusion that the mechanism of gravity is the quantum entangle­
ment of space itself. 

Further investigation of the mathematical structure of the tauquernions eventually pro­
duced the realization that is the tool of this paper: that there is exactly one more example 
of a tauquernion-type operator, namely a TauQuinion, ab+cde. 

Like tauquernions, tauquinions are also 41h roots of a projector, -I ± abcde in this 
case, and similarly mutually perpendicular. [So we're now in W5 over ZJ.] Like tau­
quernions, the tauquinions are also quaternion isomorphs, and so similarly form an 
implicitly 3 + ld coordinate system- this being the "field" of that for which the projec­
tor probes (or, alternatively, the field in which it probes). [We note that for us, afield is 
a coordinate system- which is W5 itself, it being coordinate-free - having one or more 
properties assigned to each of its points.] 

In the case of the tauquinions, their structure can be reduced to a 32 - I =? 8 x 8 group 
table, and anticipating various other features explained in later sections, we believe 
that despite apparent differences, the tauquinion group 't" is either a representation of 
SU(3), or contains it. 4 

Appendix I of [7] derives the Standard Model's particle structure almost mechanically 
from the combinatorics ofW3, which is isomorphic to the Pauli algebra via the mapping 
{iab,iac,ibc} H { a1 ,a2, a3}. This and the smooth way that tauquernions (elements of 
f14) build the bridge between QM and GR encourage us to believe that our mathematics 
connects very well to physics at the level of information. 

We show that tauquinions are the only other possible quaternion-like form in W,,. The 
tauquernion field by itself- which yields 3 + ld spacetime, mass, gravity etc. - does not 
contain any details beyond a photon (a+ b +c) and its local coordinate (ie. abc( a + b + 
c) = ab +be+ ca, a quaternion triple). So where else in the algebra could the electro­
magnetic field be? Spinors (2-vectors) are clearly to be associated with magnetism, 
and we identify 3-vectors like abc as the carriers of electric charge [7], which 2+ 3 = 5 
structure fits tauquinions and Ws nicely. 

Also, one must not forget that this is a combinatorial model over arbitrary processes, 
and so it is in principle theory-neutral. If 'C does not contain SU (3), one is forced to 
consider that it is SU(3) that is off, which is hugely unlikely. Howsoever, either SU(3) 
is in 'C or it is not, and either answer will be interesting. 

4We recycle our prior use of 't' for lauquemions. 
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A note on terminology. I have always been suspicious of people who make up new 
words, but it seems justified in the present case. The tauquemions {ab+cd} are time­
like isomorphs of the classical quatemions (which have just one spinor component), 
and play the starring role in fonning 3 + ld spacetime from the quantum mechanical 
soup [7]. Surely this deserves its own name. 

Then some time later, up popped the tauquinions {ab+cde}, quaternion isomorphs 
with a five-ness (L. quinq1ie), that are the star of this paper. 

Tauquemions and tauquinions could collectively be called entangled quatemions, which 
indeed they are; and also entangling. And since both are irreversible (tau=> time-like) 
this could be shortened to enquernions, in that the Old Norse root of quem is kvcern, 
meaning to churn ("the chum of time") or grind ("time's tooth"), which is very apt. 

0.2 Notation 

Our mathematics is that of the canonical geometric (Clifford) algebras Wn,o = W,, over 
Z3 = {0, 1,-1}, whence 1 + 1 = -1. Such an algebra is generated by a set of !-vectors 
{a, b, c, ... } with anti-commutative product xy = - yx to produce an orthogonal space of 
size IWnl = 0(2") with inner and outer products. The usual distributive and associative 
laws apply. The dimensions of this [coordinate-free] space are all the possible products 
(b~tt:)) ={l,a,b,c, ... ,ab,ac, ... ,abc,abd, ... , .. . }, which are all mutually orthog­
omil. See [2,3,4,5] for foundations (although our interpretation of the algebra is vastly 
different). 

Parseval's Identity 5 applies, so this is a phase space, namely Fourier space. Every 
expression in W is thus the Fourier decomposition of some sigoal entering the system 
via the concurrent flipping of some set of !-vectors at the system boundary. 

!-vectors denote discrete processes with two states= I bit of information; it follows 
that an m-vector ("pseudo-vector", "singleton") contains 2"' states. A 1-bit process xis 
necessarily deterministic, since in each state, there is only the other state to change to. 
["This is where frequency Vx attaches.] 

Generic concurrent !-bit processes x,y (written x + y) are considered to be orthogonal, 
which is reflected in the algebra by its anti-commutive product. Time-like sequential 
processes are represented as products of idempotents and are non-deterministic (as is 
the entire model). Usually, the expressions we write, eg. (a+b+abf =I, are valid 
for all sign variants ±a± b ± ab, each thus constituting a little theorem in itself. 

0.3 Roots of Projectors 

Projectors (measurement operators) are idempotents, and have the form 0 = -1 ± U, 
whence 02 = 0 if U2 = +I, ie. if U is unitary. 6 As with scalar +I, the principal 
square root of 0 is its negative, ie. v'rf >-+ -0. 

5 "Given an orthogonal space S wilh inner product, the projection of any function §onto Sis the Fourier 
decomposition of§ ". The Identity is a generalization of the Pythagorean theorem to " dimensions. It is 
also,. for us, both wave-partic1e duality in a nutshell, and the bridge between the discrete and the continuous. 

6 In Z3: lhe -1 in 0 corresponds to decimal!. which Iauer one finds in the base-10 version of a projector. 
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As noted earlier, in our approach 0= "+1" plays a role dual to the scalar +1, eg. 

( -1 +abcde)(ab+cde) = ab+cde. Likewise, H = ab+cde, being namely an 

enquernion, plays the role of"i", and i2 = -0 = v7f = + 1 'fabcde, which is simulta­
neously "-1 ": ( + 1-abcde) ( ab + cde) = -ab-cde. Their combination of reversible 
additive inversion (= 180° rotation) and multiplicative irreversibility is the key property 
of the enquernions, and is the source of their power. 

Table 1 displays this roots-of-projectors structure. 

scalar quaterniou time-like tauquemiou tauquiuiou 
+I +I point I "+1"=-l±U -!±abed -I ±abcde 

~ ~ ~ 
-I= v'+I -I= v'+I line± I "-r'=v'"+'" +l'fabcd +l'fabcde 

~ ~ ~ 
i=±A ab =±A I plane(s) I "t'=±J"-l" ab+cd ab+cde 

Table 1: Idempotentlsomorphs of +I and 0 =-I ±U, U2 = +1. 

The first column is the usual i = -!=I story. This same vertical progression, in a 
vector space, yields a spinor/quaternion ab (second column). A 3d rotation in W3 , 

abc( a +b+c) = ab+bc+ca, demonstrates the equivalence of a quaternion triple to a 
3d space with axes a,b,c. Like a,b,c, the three quaternion elements anti-commute. 

The third column indicates the progression of geometric concepts that appears in this 
process, and also divides the table in half, in that the i's to the left are reversible, ie. 
have multiplicative inverses, while those to the right do not, thus making them time-like 
(in addition to being space-like) rotation operators. The enquernion i's to the right are, 
spatially speaking, isomorphic to the quaternions' i's (as we will demonstrate later), but 
provide a new and unique twist, namely that even though having no inverse, they yet 
perform the requisite anti-commutative space-like rotations that make them quaternion 
isomorphs. 

Another way to look at enquernions is that they connect a quantum level change to an 
exactly equivalent 3 + 1d change, via the identity 

( -1)(ab±cde) = (1 'fabcde)(ab±cde) 

On the left is a reversible change, on the right an irreversible one. 

It seems therefore that the roots of projectors can specify the formation, structure and 
state of the field associated with the unitary entity abcde. We pursue this thought in §2. 

0.4 Hierarchy 

The algebra has the recursive (and hence hierarchical) property, that its semantics cycle 
exactly like the powers of i: { + +--+ +-- ... } as the grade of its (pseudo-)vectors 
l increases: 
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grade IE flln IIOfllliOII ,. 
... ... ... . .. 
10 ... AIO I 
9 nbedefgllj A, +I 
8 nbcdefgll A a +I 
7 nbcdefg A, I 
6 nbcdef A• -I 
5 llbcde As +I 
4 nbcd 14 +I 
3 nbc A, -I 
2 nb A2 I 
I n A, +I 
0 I Ao +I 

Note particularly that the sequence repeats every four levels, so (eg.) m-vectors of 
grades I and 5 have identical properties. This we exploit in the following, as the means 
by which a field propagates from its initial locality to a global presence, all the while 
and everywhere retaining its defining local properties. 7 

Finally, we use the boundary () and co-boundary (j operators to define and build the al­
gebra's graded hierarchy of m-vectors. There is a deep analogy between() as a bound­
ary operator and the differentiation operation of the calculus, and similarly between the 
co-boundary operator 8 and integration. 

We take (} and (j to be elements of the algebra- rather than the usual operators over the 
algebra - this being a less sophisticated but more concrete encoding of the same ideas, 
thus the definition 

8QX=±Q iff dxQ=XQ and XQ"'!X 

This definition specifies that a boundary X of Q must be an eigen1orm of Q for the 
analogy to hold, and it is not difficult to show that it requisitely satisfies (}(j = I = (j() 
and (}1 = 0 = lJk. We use (j to build hierarchy, eg. 8nb(a+ b)= ab, since dn+bab = 
(a+b)ab = -a+b"'!a+b. 

See [7) for more. 

I. Tire Ta11Quinions are isomorphic to tire classical q11aternio11s. 

The classical quaternions have the following multiplication table: 

Qi -I -be ae Qi -I -Qk 
Qj be -I -ab Qj Qk -I 
Qk -ae ab -I Qk -Qj Qj 

Qj 
-Qj 

-I 

The respective tauquinions are 'ri = ab + cde, 'rj = ac- bde, 'rk= be+ ad e. Their 
multiplication table is below left; below right is the same table, but with the mapping 
1-abcdel---7 "-1". 

7Th ere is also a mod 8 cycle, over the kinds of spaces spanned, tangential to our present purposes. 
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x Jl "C;=ab+cde "C;=ac-bde "Ck=bc+ade I I x II "C; 

"C; i-abcde bc+ade -ac+bde "C; " -1" -"Ck "Cj 
"Cj -bc-ade i-abcde ab+cde "C; "Ck "-1" -"C; 
"Ck ac-bde -ab-cde i-abcde "Ck -"C; "C; "-1" 

Like the Q's, the 't"s anti-commute, eg. 'r:;'r:j=- 'r:j'r:i; close circularly, eg. 'r:;'r:k='r:j; 
and -'r:j'r:j'r:k = 'r:k 'r:j'r:j. We emphasize that these tauquinion relationships are inde­
pendent of the restriction to z3. Clearly, the two tables to the right, quaternion and 
tauquinion, are isomorphic. So if you can build a field with quaternions, you can build 
it with tauquinions too. 

There are m = m = 5i4 = 10 such tauquinion pairs in ~s: 8 

{ab+cde, ac+bde, ad+bce,ae+bcd, bc+ade, 
bd+ace, be+acd, cd+abe, ce+abd, de+abc} 

Conjugates to these form another (dual) space 

{ab-cde, ac-bde, ad-bee, ae-bcd,bc-ade, 
bd-ace, be-acd, cd-abe, ce-abd, de-abc} 

Including negatives, there are 40 tauquinion pairs in all. Most of these form a quater­
nion triplet with two others, with some products producing some form of -1. 9 A full 
product table appears later. 

2. Tile uniqueness oftauqnemion {ab+cd} and tauqninion {ab+cde} forms. 

Let X,Y be two pseudo-vectors, whence X2 = Y2 = ±1. We wish to determine the 
conditions under which 

(X +Yf = "-1" = 1=J=XY = -v'"+l" = -v-I±XY 

where -1 ±XY = "+1" is a projector with unitary element XY. If these be so, then 
X+ Y is an analog to A. and hence can perform the 4 x ~ rotations that i = A 
performs. This in turn implicitly gives two orthogonal dimensions, from which we can 
then construct a third, a Ia classical quaternions. 

Achieving such a yCT analog requires both that (XY) 2 = + 1 and (X+ Y)2 = "-1" 
as above. Since (XYf = + 1, XY must have grade {0,1} mod4, cf. preceding table; 
and as well, satisfy li(X + Y) = XY, which means that X andY must be disjoint. Re 
+H=XY, 

(X+Y)(X+Y) = X2 +XY+YX+Y2 = ±1 + (XY+YX) ± 1 

8 Versus tauquemions: (~) = 6, but the disjointness criterion halves this to three tauquernion pairs. 
9Choosing a particular triple (there are 32 in the 10 x 10 table given later) constitutes an arbitrary choice 

of coordinate system orientation, cf. the "right hand rule" in 3d. 
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so to get the desired unitary XY, X andY must commute, the right-most yielding 

= ±1- XY ± 1 

since XY + XY = -XY in Z:J, This commutativity means that at least one of X, Y has 
grade {0,2}mod4. Say X2 = ab. Then Y can be of either even or odd grade. 

To get a+ 1 (in "-1" = +1 ±XY), both X andY must square to -1, which means that 
X,Y must both have grade {2,3}mod4. So X2 = ab still holds. 

lf we then choose Y to also be of even grade, Y2 = cd, we get the tauquernion family 
{ab+cd}. ChoosingX,Y to be both ofgrade4 yields (X4 +Y4j2 = ( -1 ±Xt¥4 ), which 
is "+1", not "-1". Choosing grades 2 and 4 yields grade 6, whence (X2Y4j2 = -1, not 
+ 1. 10 So the base case is 2 + 2 = 4, the tauquemions. 

Instead, if for odd Y we choose grade = 1, then Y1 = c and we would have X2 + Y1 = 
ab+c, which leads to the quark family [7]; so we choose grade= 3, say Y3 = cde. This 
then yields the tauquinion family {ab+cde}. Choosing odd= 1 and even=4 is in the 
tauquinion table automatically - see below. So the base case is 2 + 3, the tauquinions. 

Thus, due to the algebra's mod 4 cycle, any pair with the grade structure 2mod 4 + 
3 mod 4 will have tauquinion properties. Similarly, any pair with the grade structure 
2mod4+2mod4 will have tauquernion properties. But no others are possible, since 
the tauquernion and tauquinion forms exhaust the algebra's possibilities in this regard. 

Note that 1 + 3 = 4 appears nowhere. Cf. [7], this corresponds to dark matter. Because 
(!mod 4 + 3 mod 4 )2 is always zero, yielding no "± 1 ± U" at all, dark matter is therefore 
out of the structure game except as it is associated with tauquernions. We return to this 
later. 

Summarizing, there are then just these two groups, tauquernions and tauquirtions, of 
fundamental field-generators derived from pairs of pseudo-vectors X+ Y such that (X+ 
Yf = "-1", which ("-1")2 is the idempotent operator "+1"= 0 = -1 ±XY. 

3. How the ta11q11inion field is organized and propagated. 

Both the tauquernion and tauquinion fields achieve their coverage in two ways: 

1. Lateral recombination at/across the same two grade-levels, eg. (ab + cde) + 
(fg + hij) ~ (ab + hij) + (fg + cde). Note that this recombination is tl(•h 
and so convenient to associate a dilution effect of tl( -}x) [once the tauquernions 
have built 3 + ld]. [ .. ..,.. .. means "leads to"] 

2. Hierarchical consolidation, eg. li(ab+cde) = abcde. 

The latter, which models local-to-global propagation (vs. Lateral's local-to-local), oc­
curs via the co-boundary sequence 

10 But note that 6+6 = 12 =0mod4, which works. Tauquemion space (like tauquinion space, as we shall 
see) thus expands in two ways, 4+2=6= 2mod4- 6+6= 12 =0mod4 and I+ 1 =2- 2+2=4 = 

Omod4. But we keep our focus on tauquinion space. 
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pairs O(pair) 11ewle~·el 

2mod4+3mod4 ~ 5 - lmod4 \. 
2mod4+2mod4 ~ 4 - Omod4 \. 
lmod4+2mod4 ~ 3 charge .+ 
lmod4+ 1mod4 ~ 2 spiu . j. 
Omod4+1mod4 ~ I existence <-

wherein we see the formative role to be played by the algebra's telescoping of its se­

mantic levels mod 4. In particular, the 2 + 3 = 5 ~ 1 loop propagates its form in 
every cycle of hierarchical consolidation, always being created from previous levels 
{2,3}mod4. 1n this way a field is propagated "up" to macroscopic size, whence its 
basic character is the same at all scales. 

The table below displays, in the left-most six columns, the algebraic buildup of higher 
and higher grade pseudo-vectors in this 2 + 3 = 5 o-+ 1 fashion. 

pair I o(pair) I pair 1 o(pair) pair o(pair) grade g 
... . .. ... 

C,+C, Cs 50+75-125 
C,+C, c. 50+50=100 
C,+C, c, 25+50=75 
c, +Ct c, 25+25=50 

B,+B• Bs .... c, 5+20=25 
B,+B> Bs .... c, 10+15 25 
B,+B, B• 10+10=20 
B,+B, B, 5+10=15 
Bt+Bt B, 5+5-10 

A,+A. As >-+B, 1+4=5 
A2+A, As >->B, 2+3=5 
A2+A2 A. 2+b4 
A1+A2 A, 2+1~3 

A1+A1 A, l+l-2 
A, 0+1=1 
A, 1 
Ao 0 

The rightmost column, grade g, is the grade of the m-vectorcreated by li(pair). 

198 



pair I pair pair grade g nwd4 i F; F; mod4 
... ... 0 12 144 0 I 

Cz+C3 50+75=125 1 11 89 1 I 
Cz+Cz 50+50-100 
Ct+Cz 25+50-75 3 10 55 1 3 I 
Ct+Ct 25+25-50 2 9 34 1 2 I 

Bt +B4 >-+ Ct 5+20-25 
Bz+B3 r+Ct 10+15-25 1 8 21 1 1 I 
Bz+Bz 10+10-20 
Bt +Bz 5+10-15 3 7 131 1 I 
Bt +Bt 5+5-10 2 6 8 I 0 I 

At +A4 r+Bt 1+4-5 
Az+A3 r+Bt 2+3-5 1 5 5 I 1 I 
Az+Az 2+2=4 
At +Az 2+1-3 3 4 3 3 
At +At 1+1-2 2 3 2 2 

At 0+1-1 1 2 1 1 
At 1 1 1 1 1 
Ao 0 0 0 0 0 

Note now the next column, labelled mod 4, ie. g mad 4. For example, the grade of them­
vector made by o(Az + A3) = A5 >-+ B1 is the sum of the grades of its two constituents, 
namely 2+3 = 5, and 5mod4= 1; and similarly the next octave up, B2 +B3 H 10+ 
15 = 25, we get Ct. and 25mod4 = 1. So Bz +B3 H Ct isj11st IikeAz +A3 >-+ Bt. 

The last three columns are, respectively, a counter i, the corresponding element F; of 
the Fibonacci series, and finally F;mod4. Note that the two mad4 columns corre­
spond closely; see the footnote re the differences at steps 6 and 7. II Furthermore, 
the ratio of successive entries in the grade g column approximates the golden mean rp, 
eg. g14/g13 = 525/325 = 1.6153 ... vs. rp = (1 + VS)/2 = 1.6180 ... , as one would 
expect. That is, the tauquinion field has an underlying deep Fibonacci structure! 12 l3 

It is at this level of abstraction that we connect to Coldea eta/'s finding [1]. 

The Z:3 W,, picture is a bit like an x-ray photograph of the quantum mechanical world 
- it shows the overall bone structure, but the details of the flesh - of which there are 
many - must be provided from elsewhere (ie. known physics). In fact, one could 
argue that our analysis shows that much of the mathematical thicket that is quantum 
mechanics is (apparently) concerned with expressing process, structure, and their inter­
relationship. Because in our algebra, vectors are processes and structure derives from 

11The differences originate in 5+5 =(I+ I)+ (4+4) = 10 = 2mod4 ve~Sus F's 3+5 = 8 = Omod4. 
Since 4+4 =0mod4, the two differ by I+ I= 2; step 7 then adds I to get 3. The two extra l's ultimately 
stem from D's doub/iug of5 (vs. doubling4). The two sequences are identical mod2- (0,1,1) '*,and hence 
rejoin explicitly every other F -cycle, next at F6 + F, =Fa. [ h- means one or more inslances] 

12 Actually, ally such accumulating sequence with positive numbers will converge to cp, but the subject of 
§5 shows that this version of the sequence has its origin jn Fibonacci's. 

13 As with tauquemions, there are two tauquinion sequences: 2+ 3 = 5 ~ 1 and 3 + 3 = 6- 6+ 6 = 
12 ~ 0. I speculate that the paired Fibonacci numbem in (eg.) pinecones and sunflowe~S arise from this. 
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their co-occurrence (" +"), these two are completely integrated, and the algebra's min­
imality wraps the physics tightly. 

Stepping back, it is apparent that the emergence of the Fibonacci sequence at the quan­
tum level is a mathematical inevitability that Coldea et al.'s experimental result con­
firms. It is the dual physical and computational, process-oriented interpretations that 
we simultaneously lay on the algebra that give this conclusion conceptual heft. 

Herein also lies a prediction, since the 't" sequence does differ slightly (mod 4 vs. 
mod2) from the mathematical ideal, which might perhaps be measurable. This mea­
surement would tell us if the universe is fundamentally built on the rationals (the mod 4 
sequence) or the reals (the mod2 sequence, which approximates the irrational rp better). 

Furthermore, the correspondence we have found is not just the usual numerical se­
quence - it is also, uniquely, exact operators and actual states, a gift from !?'s graded 
structure. That is, one would expect that the Fibonacci properties of macroscopic en­
tities like flowers, pinecones, and sea shells are brought about by the operation of 
tauquinions, steering the growth. As well, since electro-magnetism itself is very well 
characterized, one can inqnire directly. These are predictions. 14 

We needn't restrict F;modn to 11 = 4: any 11 produces a pattern a Ia (011231 )h above, 
but more jumbled (ie. longer); mod2 produces (011)~>. Indeed, the fact that these 
patterns are all (more and less) simultaneously present means that the hierarchy, and 
the patterns themselves, are fundamentally fractal in nature. 

It is interesting to see what the significant neighbor to Fibonacci's sequence, namely 
Lucas' sequence, says: 

L· I (L· 2 +L· ,)mod4 
' ·- ·-

11 123 3+0>->3 
10 76 1+3>->0 
9 47 2+1>->3 
8 29 3+2>->1 
7 18 3+3>->2 
6 11 0+3>->3 
5 7 3+0>->3 
4 4 1+3>->0 
3 3 2+1>-> 3 
2 I I 
1 2 2 

As noted earlier, we identify the form w + xyz ="I + 3" as dark matter. This form is 
nilpotent in all sign variants, and so cannot be the "-!"-like root of a projector -1 ± 

14 Even though the fjbonacci imprint is present from the very bottom of the hierarchy, this same mecha­
nism's effect or appearance at higher levels is not reductionistically dependent on this prior presence. Rather, 
the same forms can emerge spontaneously at any given level as a collective (je. emergent) property of the 
very {growth!] processes that are taking place there. Maybe Fibonacci cities are the future [9]. 
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w~yz that we seek, even though li ( w + zyz) = wzyz. Therefore, it cannot be the basis 
for a coordinate system. 

Thus dark matter is no part of the tauquinion field, nor its putative electro-magnetic 
properties. 

201 



X I ab+cde-j -ac-bde I ad+bce I ae berT bc+ade I bd-ace I be+acd I cd+abe I ce-abd 
I ab+cde I .. 1.. - I -bc~Oiie I bd+ace I be acd I ac-bde ad+bce I ae bCii -I e-abcd I -d-abce 

ac-bde 1 bc+aJe 1 .. 1.. r -cd-abe 1 -ce+abd 1 ab cde 1 -e+abcd 1 d+abce 1 aJ+bce ·r _ ae-bcit-1 
1 aJ+bce 1 bd ace 1 cd+abe .. 1.. de abc 1 e-abcd _1_ ~llli~cde 1 c+abde 1 ac+bite-_1-t>+izcde ___ l 

de+abc §3 ~ ~ 
c-abde ·· :3 ;.. 
b-acde !;' ;;· Q 

S'-"' " "' ae bed ~E .. ... 
1 ae bed 1 be+acd 1 ce abtr 1 de+abc 1 .. 1.. 1 a:..abce 1 c~abde 1 ab cde 1 t>-acde 1_-ac+bde 1 

I bc+ade I ac+bde I ab+cde I e abed I d abce .. -1.. ::C(:(!CCQ.be ce+abd_l bd~ac~-be-'tiicd I 
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Note that there are five groups, defined by their particular v + wxyz = '- 1'. To focus on 
one of these groups, taking only those 2-vectors that belong to W4 on{ a, b, c ,d} reduces 
this 10 x 10 table to 6 x 6: 

X I ob+cde I oc bde od+bee be ode bd ace cd abe 

ab+cde I abc de be ade bd+ace nc+bde ad+bce e+abcd 
ac-bde be+ade I-abcde -cd-abe ab+cde -e+abcd -ad-bee 
ad+bce bd ace cd+abe I abc de e+obed ab cde ac bde 
be ode oc bde ab cde e+abed I abcde cd+abe bd ace 

bd-ace -ad-bee -e+abed ab+cde -cd-abe 1-abcde be+ade 
cd abe e+abcd ad+bce ac+bde bd+ace be a de I abede 

This particular set of tauquinions was chosen so that the 2-vectors form a Higgs boson 
.Yt' (ie. nilpotent). The 3-vector electric component tff is also nilpotent, as is .Yt' + tff. 
15 

Noli ng that both 1 - abed e = "- I" and -e + abed = '-1', which we take to be the 
magnetic and electrical polarity indicators, respectively, the preceding table can be 
rewritten a bit more clearly: 

X I ab+cde I ac-bde ad+bce -bc-ade bd-ace -cd-abe 

ab+cde 00 100 be ade bd+ace ac+bde ad+bee . I' 
ac-bde be+ade 00 -100 -cd-abe ab+cde '-1· -ad-bee 
ad+bce bd ace cd+abe 00 100 . I' -ab cde ac bde 
be a de ac bde ab cde ' I' 00 100 cd+abe bd ace 

bd ace -ad -bee '-I' ab+cde cd abe 00 -100 be+ade 
cd abe ' I' ad+bce ac+bde bd+ace be a de 00 100 

This table is then, presumably, the entire field situation in 3-space at a single point - as 
specified by the tauquernion subset, including the electro-magnetic field - as specified 
by the tauquinion relationships, which latter are thus automatically constrained in 3 + 
ld by their tauquernion components. 

An electro-magnetic field interplays two polarities - magnetic and electric - which po­
larities are ultimately specified by the orientations of the associated spinors. The 2-
spinor configuration defines the magnetic field in 3-space, and its minus-sign is indi­
cated by the NW-SE diagonal,"-!"= 1 ±abed e. 

Similarly, the 3-spinor configuration defines the electric field tff, and its polar indicator 
'-I'= ±(e -abed) is the NE-SW diagonal; note that electric-plus is (e ±abcdf = 
-1 ±abcde = "+1" as it should. However, it's "minus" with a twist: (e -abcd)(ab+ 
cde) = -cd -abe, so not only are both charges reversed, but the electric and magnetic 
components do a dosey-do as well; fans of Maxwell's equations will recognize this. 
More straightforwardly, (I-abcde)(-e+abcd) = e -abed. 

The following relationships hold for the above-specified field. However, due to the 
extreme symmetry of Wn over Z3, one can view them as true for all field-type states; 
other states are roots of unity. 

15Such nilpotent forms are a real minority- only 240, versus 13,200 that are not. 
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Tauquernions 'r; =ab-ed; t 1 = ae+bd; tk =ad -be. .Yt' is the Higgs boson . 

.Yt'='t';+t,+tk .Yt'*.Yt'=O 

tC = ede-bde+bee-ade-aee-abe tC * tC = 0 

= (ed-bd+bc-ad-ac-ab)e= -.Yt'e 

.Yt' + tC = .Yt' -.Yt'e = .Yt'(1-e) (tf +.Yt'f = 0 

Since tC = -.Yt'e, g is compatibly entangled with the gravitational field formed by .Yt'. 

Finally, the Appendix describes Majorana fermions, which are of great interest in quan­
tum computing, and which have recently [possibly] been observed [11]. 

5. A Fi11al Puzzle 

If one lists all the unitary elements U in the algebra 0'3 (isomorphic to the Pauli alge­
bra), one finds the following (U2 = + 1): 

1, a, ab+ac, a+b+ab, a+b+c+ab+ac 

with dimensionalities (=terms) respectively 1,1,2,3,5. Until now, it has been entirely 
opaque as to whether this was chance or a (maybe) instance of a Fibonacci progression. 
Now, the problem is reversed: how to understand these given the preceding analysis. 

The unitary elements U we have discussed in earlier sections have always been a sin­
gleton term, and these constructed via Ci from pairs of same. Now, however, our idem­
potents look like 

-1+a+b+ab, -1+ab+ac, -1+a+b+c+ab+ae 

Where do these multi-term U's come from? Our usual constructor, the co-boundary 
operator Ci, fails. Adding suspense to the story, these -1 + U's we have elsewhere 
identified as the neutrino, electron, and proton projectors, respectively [7]. Do they 
nevertheless have the roots we require? [see Table 2.] 

time-like neutrino electron proton 

"+1"=-I±U -l+a+b+ab -l+ab+ac -l+a+b+c+ab+ac 
~ 

"-1"= .;"'+T" 1-a-b-ab 1-ab-ac 1-a-b-c-ab-ac 

~ 
"t'= -V"=l" none ±(b-e-abc) ±(b-c+ab-ac+bc-abc) 

=abcU =abcU; (b-c+ab-ac+bc)4 =U 

Table 2: Time-like roots of stable particles. 

Clearly, from the table, we can try to apply our same reasoning with electrons and 
protons - they at least have fourth roots - but neutrinos will need a different treatment 
(next f+ 1). If we are to remain faithful to our earlier interpretation of .Yt' and tC as 
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field generators, then b-c-abc too should be the actual field element associated with 
the electron projector -1 + ab + ac, and namely charged: -abc; and similarly for the 
proton. Certainly, b- c- abc is, like an electron, very nearly a geometric point: an 
oriented volume -abc with mostly missing sides (b- c only determines a plane be); 
the proton's fourth root is similarly missing various faces. 

Do the multiple i's (for a given particle forme or p) anti-commute with each other a Ia 
quaternions and enquernions? Ie. make tiny 3 + ld spaces that tile up into something 
macroscopic? No, they remain isolated. Instead of anti-commuting, these products 
produce each other's additive inverse. That is, they do not form quaternion triples, and 
so no field. In fact, these fourth root "imaginaries" are just abc rotations of the original 
idempotent form, not at all what is needed. 

Regarding the neutrino, theform±l±a±b±ab always factors into one of the products 
(±1 ±a)(±l ±b) or (±1 ±b)(±l ±a), of which there are sixteen in all. Those with 
-1 are idempotents, and as before, their negatives (ie. with+ 1) are their square roots 
(sqerts). But alas, the neutrino's sqerts themselves have no square roots at all, so our 
game is stymied again. 

Despite the fact that the neutrino's structural dynamic differs from that of electrons 
and protons, which themselves aren't simple pseudo-vectors either, some juggling act 
nevertheless ends up creating the first five members of the Fibonacci sequence, even 
though what's going on is, by definition, completely uncoordinated co-occurrences of 
small 1- and 2-vector "atoms" ... in an entirely non-deterministic process frenzy that 
is nevertheless self-synchronized and convergent ... to namely 1, 1, 2, 3, 5. How might 
this come to be? 

The three complex oscillations - engendered ultimately by the Bit Bang's entropy cre­
ation [7] - are stable because they are unitary (and entropically favored). Their struc­
tures are inter-connected: 

I I ab I I w I I I I ab I + I ac I I I I ab I + I ac I I 
Ia I+ lbl lellal 1&1 lellal + lbl +lei 

The transition a+ b ~ ab results in the unitary entity a+ b +ab, which is the simplest 
possible non-trivial stable oscillatory structure, simplest because it derives from the 
simplest possible structure-generating distinction: two 1-bit states that co-occur/exclude. 

a + c ~ ac proceeds similarly. The co-occurrences ab + ac and a + b + c + ab + ac 
are unitary already, and do not engender a co-boundary transition. 

Their behavior is wave-like, and as the independent elements (the 1-vectors a,b,c) 
change, so will the spins of ab,ac oscillate accordingly. Note that while particular 
frequencies v., Yb, Vc can be directly associated with a,b,c, the unitarily of a+b+ab 
and the others is namely 1101 dependent on their values. 

In conclusion, the actual unitaries {ab+ac, a+b+ab, a+b+c+ab+ac} are the very 
first generation of the underlying recursive Fibonacci structure, born in the inevitable 
unitarily of their oscillation. 
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So why is the Fibonacci sequence the convergent and not something else? Our answer 
is that the uniqueness of the two enquernion forms, along with the algebra's mod 4 
cycle, allow very little room for Nature to experiment in. If there are other possible 
Fibonacci-like sequences, they apparently all fizzle out, eg. the closely related Lucas' 
sequence, leaving the Fibonacci sequence the only surviving possibility. 

One last, mathematical, remark: the golden ratio derives from the proportion 

i = m· leading to the roots (golden ratios) rp = 1+{'5 = 1.618033989 and rp' = 
l-/5 = -0.618033989. It is easy to show that rp = --b" and vice versa. Consider now 

the following (left-to-right): [Recall that U = u-1 when U2 = + 1] 

or 

rprp' = -1 ii=-1 

That is, the multiplicative inverse of rp includes a sign inversion ... just like i ... just 
like tauquinions. That is, the golden ratios rp and rp', a11d i = A. a11d '0 = ab + cde, 
al!d '0 = ab + cd, are actually all in the same family: fourth roots of unity (ie. of its 
particular version of"+ 1 "). So it is not quite so surprising that the Fibonacci sequence 
should show up in our analysis of tauquinions. [They are also examples of Jacobian 
theta/modular functions.] 

6. Re Coldea et al.'sjil!dillgs. 

Coldea et a/.'s theoretical and experimental considerations lie well outside our exper­
tise. This, we think, supports our case, since we have shown in the preceding that 
the build-up of structure up in ~3 ( = the Standard Model) inevitably produces the Fi­
bonacci sequence, in ignorance of their work. 

Considering the ~3 build-up to be the base case in an inductive proof, we then pro­
ceeded to show that the 2 + 3 = 5 >--+ I pattern continues into higher grades without 
bound. Had we not discovered Coldea et al.'s result via literature search, we would 
have predicted that the golden mean would be found in quantum systems, from the 
simplest to the most complex, and indeed, beyond. 

As regards the exceptional Lie group E8, we do not at this point know if it is present 
here, or whether we have solved its problem without it. 
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Appendix: Majorana Fermions in ~5 over Z3 

Majorana fermions are characterized by having spin 112 and being self-conjugate, 
meaning that they are nilpotent, and thus are field-like forms of otherwise material 
particles. 

We find that all four fermions -protons, neutrons, electrons and neutrinos - all have at 
least one Majorana operator M that transforms them into a self-conjugate form. That 
is, M is a form whose variants match corresponding variants in the fermions. 

M = a+ bcde is one such form in the case of an electron E: 

E = -1+ab+ac= -(a+b+c)a 

where ( ab + ac )2 = 1 and a + b + c is a photon. Then 

ME= (-a+b+c) +abde-acde-bcde 

EM= -(a+b+c)-abde+acde-bcde 

and (EMf= 0 = (MEf, 

EM (for example) can be rewritten as 

EM= -(a+b+c)- (ab+bc+ca)de 

Note that ab+bc+ca is a quaternion triplet. And because abc(ab+bc+ca) =-(a+ 
b+c) = (ab +bc+ca)abc and -abc•abc = 1, we can write 

= -(a+b+c)- (ab+bc+ca)(-abc•abc)de 

= -(a+b+c)- (a+b+c)abcde 

= (a+b+c)(-1-abcde) 

wherein we see that the Majorana electron's photonic aspect consists of a "fundamen­
tal" -(a+b+c)abcde and a "mod4-octave" overtone -(a+b+c). 16 The "mod4-
octave" refers to geometric algebra's pseudo-vectors, whose squares cycle as powers 
of i = A as their grade increases, ie. mod 4. Therefore 1-vectors like a+ b + c 
and 5-vectors like abcde have the same (grammatical) algebraic properties, whence the 
"octave" designation. 17 

Or we can factor a out and in, and see the two concurrent electron phases: 

16 Or, if you prefer, a fundamentala+h+ c and a "mod4-octave" undertone -(a+b+c)abcde. 
17 " •.• lbis description applies to the ground-state rotational band of carbon-12, but it also has signif­

icance for the Hoyle state. This is because the spectmm of the Hoy/e-state rotational baud appears to 
be similar to thnt of tire grmmd-state baud - with two of the five spin states measured already. How­
ever, the Hoyle state appears to have a larger momem ofi,enia than the ground state." [My italics] From 
hltp://physicsworld.cornlcws/article/news/2014/jul/08/carbon-nucleus-seen-spinning-in-triangular-state. 
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= (-I+ab+ac)a+(-1 +ab+ac)bcde 

EM= (-1 +ab+ac)(I +abcde)a 

which tells us that a Majorana electron is an a-rotation of that electron's combined 
fundamental and mod4-octave frequencies. 

The W5 Majorana operator M has two basic forms, I:(v+w~yz) and:!:(vw+xyz), where 
the latter is a tauquinion field element, and the former one of the minus 1's in the 
tauquinion group. In particular, this minus I form is the linchpin connector between 
the magnetic and electric fields, ensuring that any true change in one results in a corre­
sponding change in the other. 

For example, in the case of M = e +abed and another field element, say F = ab­
cde, we find that MF = cd -abe= FM, so M inverts the signs of both the magnetic 
(2-vector) and electric (3-vector) components, and it interchanges them (ab B cd), 
thus linking the two fields utterly. [Recall that the forms vw + xyz are all quaternion 
isomorphs.] 

In the case of the electron E = -1 +ab+ac, the 1 +4 Majorana operators are: 

M=a+bcde EM== (a+b+c)( -1-abcde) 

M = (b+acde) +(c-abde) EM= (a+b+c)(-1+abcde) 

M = (b+acde) + ( -c+abde) + (d +abce) 

EM= (b-c+d)(-1 +e+abcd-abcde) 

M = (a+bcde)+ (b+acde)+(-c+abde)+ (e-abcd) 

The electron's 2 + 3 Majorana operators are: 

M=ad+bce 

M = (bd -acd) + (cd -abe) 

M = (-ab+cde)+ (ac+bde) +(-ae+bcd) 

M = (-ab-cde)+ (ac-bde) + (ae+bcd) + (bc-ade) 

So we see that the electron's Majorana operators are linear combinations oftauqueruion 
group elements. Similarly for the proton P = -1 +a+b+c+ab+ac, the correspond­
ing Majorana operator is three 2 + 3's: 

M= (-ae+bcd)+(-bd+ace)+(-be-acd) PM= -ae-be-ce+abd-acd+bcd 

and likewise for the neutron N = abcP = b - c + ab - ac + be -abc, 

M = (-ae+bcd)+(-bd+ace)+(-be-acd) NM = -ad-bd-cd-abe+ace-bce 

whose M is identical. 
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In the case of the neutrino n = -I +a+ b + ab, 18 the corresponding Majorana opera­
tors are: 

M = (a-bcde)+(-b-acde) 

M = ( -c+abde) + ( -d -abce) + (-e+abcd) 

M = (ad+bce)+(bd-ace) 

M = (cd -abe)+(ce+abd)+ (de-abc) 

M = ( -ac-bde) + ( -ae+bcd) + (cd +abe)+ ( -de+abc) 

Thus there are Majorana operators in W5 for all four fermions, and all of these operators 
are linear combinations of elements of the tauquinion group. 

This in turn prompts the question, Are there Majorana fermions in the gravitational 
(ie. tauquernion) field too? Yes. And indeed, every category has at least one valid 
Majorana example except 2 + 2 for protons and neutrons. We list a few examples: 

W4 Tauquemion Majorana Operators 
1+3 

Electron d-abc 
-b+c-abd -acd 
-a+b+d-abc-acd+bcd 
-a+b-c+d-abc-abd-acd-
-a+b- c+d -abc -abd -acd- bed 

Nemrino -c-d-abc-abd 
a-b+c+abd+acd+bcd 

Proton -b+c-d+abc+abd+acd 
Neutron -b+c+d-abc+abd+acd 

2+2 
Electron ad+bc 
Neutrino -ac-bd +-ad-be 
Proton None 
Neutron None 

In general, while there are several hundred tauquinion (1 +4 and 2+3) variants alto­
gether, the tauquernion variants (1 +3 and 2+2) are fewer than a hundred; details are 
available on request. We note that [7] identifies the I + 3 forms w + xyz as dark matter. 

One can hope that the present computationally distributed and combinatorially exact 
description of quantum mechanics, which is as well consistent with the Standard Model 
(but doesn't need SUSY), will be useful in topological quantum computation. 

Since the algebra is a literal representation of actual events (ie. state changes), each 
of the various possible factorizations represents a different pattern of actions leading to 

18 I note that Appendix I in [7] supports the existence of a founh neutrino as a linear combination of three 
basic phases, and strictly combinatorially there could be three more phases via pairwise combination. 
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the Majorana particle, eg. EM. Furthermore, products express actual processes, just as 
sums express their concurrency. 

Thus these factorizations are not just mere mathematical manipulations, but rather, due 
to the algebra's literality, they are different stmctural views of the same object, just as 
oue gets different views of a house from various directions. Since the algebra is both 
discrete and finite, the statistics of these patterns and processes should match those of 
actual experiment. 
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BiEntropy- The Approximate Entropy of a Finite Binary String 

Grenville J. Croll 
grenvillecroll@gmail.com 

We design, implement and test a simple algorithm which computes the approximate 
entropy of a finite binary string of arbitrary length. The algorithm uses a weighted 
average of the Shannon Entropies of the string and all but the last binary derivative of the 
string. We successfully test the algorithm in the fields of Prime Number Theory (where we 
prove explicitly that the sequence of prime numbers is not periodic), Human Vision, 
Cryptography, Random Number Generation and Quantitative Finance. 

I INTRODUCTION 

The purpose of this paper is to illustrate the means by which a finite binary string of arbitrary length 
can be compared against another in terms of the relative order and disorder of all of its digits. We do 
this using a simple function called BiEntropy, which is based upon a weighted average of the Shannon 
Entropies of all but the last binary derivative of the string. 

This paper is organised as follows: First, we briefly cover the historical background regarding the 
development of tests and measures of order, disorder, randomness, irregularity and entropy. We show 
that binary derivatives have previously been used in the measurement of disorder and have also been 
used in cryptographic applications and attacks. 

Second, we discuss our intuitive understanding of order and disorder, Shannon Entropy and Binary 
Derivatives in more detail. We outline a number of issues that were important in formulating the 
BiEntropy function, following which we formally define it together with some simple variations. 

Third, we apply the BiEntropy method in a number of diverse application areas including: 

a) Prime Number Theory- We show that BiEntropy empirically determines that the 
sequence of early prime numbers is not periodic. This result is implicit due to the Prime 
Number Theorem. We prove this non-periodicity explicitly through two simple corollaries. 

b) Human Vision- We demonstrate the use of BiEntropy in powerfully discriminating 
between the geometrical layouts of some standard ISO dot matrix characters compared to 
some randomly produced strings, the Braille character set and two specially designed high and 
low entropy character sets. 

c) Random Number Generation- We use BiEntropy to evaluate the decimal expansions of 
some well known random, normal and irrational numbers using a simple decimal to binary 
coding scheme. We compare these expansions with similar output from the Random Number 
Generators within Excel 2003 and Excel 2010. 

d) Cryptography- We use BiEntropy to simply and easily reveal significant differences 
between the encrypted and unencrypted binary files of some real and synthetic spreadsheets. 

e) Quantitative Finance- We use BiEntropy to examine 10 years worth of UK daily stock 
market prices to show that the BiEntropy of historical price changes is strongly correlated with 
future stock market prices. 

Finally, we provide a summary and identity some areas for future work. 

Copyright 0 2013 Grenville J. Croll. All Rights Reserved 
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2 HISTORICAL BACKGROUND 

There are very many tests and algorithms for the determination or measurement of randomness, 
regularity, irregularity, order, disorder and entropy for binary and other strings [Marsaglia, 1968][Gao, 
Ki.ontoyiannis & Bienenstock, 2008]. There are several measures which derive a scalar linked to the 
randomness, disorder or entropy of finite strings such as Binary Entropy [Shannon, 1948], 
Approximate Entropy [Pincus, 1991] [Pincus & Singer, 1996][Rukhin, 2000a,b ], Sample Entropy 
[Richman &Moorman, 2000] and Fuzzy Entropy [Chen, Wu & Yang, 2009]. Existing tests and 
algorithms appear to be divided into two classes: those which use a sliding window technique to 
examine substrings of the original string [Marsaglia & Zaman, 1993] and those which are related to 
the length of algorithms used to generate the entire string [Kolmogorov, 1965] [Chaitin, 1966]. Some 
ofthese functions have been applied in critically important domains [Pincus & Viscarello, 1992]. 

Whilst there have been a number of attempts to use binary derivatives in randomness tests [McNair, 
1989], cryptographic applications [Carroll, 1989, 1998] and attacks [Bruwer, 1995], we believe that 
the use of a weighted average of the Shannon entropies of the binary derivatives of a string is unique. 

3 INTUITIVE INSIGHT INTO BINARY ORDER & DISORDER 

Table 1 suggests how we might intuitively regard the order and disorder of some 8 bit binary strings. 

Table 1- Intuitive Insight into some short binary strings 

Binary String 

11111111 
00000000 
01010110 
01010101 
11001100 
01011010 
01101011 
10110101 

Description 

Perfect! y ordered 
Perfect! y ordered 
Mostly ordered 
Regular, not disordered 
Regular, not disordered 
Mostly ordered 
Somewhat disordered 
Somewhat disordered 

Reason 

All 1 's 
All O's 
Mostly 01's 
Repeating 01 's 
Repeating 1100's 
0101 then 1010 
No Apparent Pattern 
No Apparent Pattern 

Determination of the relative order and disorder of the 256 possible 8-bit binary strings is an obvious 
example problem that does not appear to have been previously addressed in the I iterature. There are 
256! (:::::8.58 * 10508

) differing ways of ordering the 8 bit binary strings. 

We require an algorithm which will determine the relative and/or absolute degree of order and 
disorder of binary strings such as the above, for arbitrarily long binary strings. The algorithm will 
return 0 for perfectly ordered strings and I for perfectly disordered strings. 

4 SHANNON ENTROPY, BINARY DERIVATIVES & WEIGHTING METHODS 

4.1 Shannon Entropy 

Shannon's Entropy of a binary strings= s1, ••• ,s, where P(s;=l) = p (and 0 log2 0 is defined to be 
0) is: 

H(p) = -p lo~p- (1- p) log2 (1- p) 

For perfectly ordered strings which are all 1 's or all O's i.e. p = 0 or p = 1, H(p) returns 0. Where p = 
0.5, H(p) returns 1, reflecting maximum variety. However, for a string such as 01010101, where p = 
0.5, H(p) also returns 1, ignoring completely the periodic nature of the string. 
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4.2 Binary Derivatives & Periodicity 

The first binary derivative of s, d1(s), is the binary string of length n- 1 formed by XORing adjacent 
pairs of digits. We refer to the kth derivative of s dk(s) as the binary derivative of dk_1(s). There are n-1 
binary derivatives of s. 

Some years ago [Nathanson, 1971], following the work of [Goka, 1970] defined the notions of period 
and eventual period within arbitrary binary strings and outlined the related properties of the 
derivatives both individually and collectively. Amongst a number of useful results we find that: a) if 
the derivative of a binary string is eventually periodic with a period P then the binary string is also 
eventually periodic with a period P or 2P; b) if a derivative is all zero's then the string has a period 2"' 
for some m, 0 ~ m ~ n; c) if a derivative bas eventual period P, the string has eventual period 2mP for 
some m satisfying 0 ~ m ~ n. 

Adapting Nathanson's definitions for finite strings, a binary strings oflength n is periodic if, for some 
least positive integer P, s i+P = s; for all 1 ~ i ~ n-P. A binary strings oflength n is eventually periodic 
if, for some least positive integer P and some least positive nonnegative integer k, s i+P = s; for all k~ i 
~ n-P. Note that a finite binary string can be read left to right or right to left such that we may need to 
refer to a string as being either right or left reading eventually periodic and adapt our notation 
accordingly. 

For example, the first binary derivative of01010101 (with period, P = 2) is 1111111 (P = 1), 
following which all the higher derivatives are all O's. The third derivative of00010001 (P = 4) is 
11111, following which again all the higher derivatives are 0. The sixth derivative of00011111 (with 
right reading eventual period P = 1 from the fourth digit) is 10. 

By calculating all the binary derivatives of s we can discover the existence of repetitive patterns in 
binary strings of arbitrary length. If a binary string is periodic its last derivative is zero. A binary string 
is aperiodic if its last derivative is 1 (else its last but one derivative is periodic and the string itself is 
therefore eventually periodic). A binary string is nperiodic if its last derivative is 0, but is not periodic. 

Although Nathanson's definitions (and our own adapted definitions) of periodicity and eventual 
periodicity are useful, in this paper we rely solely upon the binary derivatives of a finite string to 
resolve the issue of the periodicity within the string. 

[Davies et al, 1995] outline some further properties of binary derivatives. Let p(k) denote the observed 
fraction of I 's in dk(s) where p(O) denotes the fraction of I 's ins. Let 1r(k} denote the corresponding 
population proportions. Provided p(O) = 0.5, p(1) is not correlated with p(O). Likewise, where 1r(k) = 
O.S,p(k+l) is not correlated withp(k), the sample proportions are independent. By induction, these 
properties apply to the higher derivatives. 

4.3 Weighting Methods 

Thus there are number of important factors to consider in designing a function fJ to compute the 
approximate entropy of a finite binary string: 

i) The Shannon entropy of a binary string does not give a complete picture regarding the order 
and disorder ofthe string due to the failure to accommodate periodicity. 

ii) The derivatives of a binary string determine the existence of periodicity in the string. 
iii) Determination of any periodicity may require the evaluation of all n-1 derivatives. 
iv) The proportion of I 's & O's in the binary derivatives are or can be independent. 
v) Differing consideration may have to be given to higher or lower derivatives 
vi) The function is required to be effective on strings of arbitrary length. 
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The Shannon entropy of a binary derivative is H(p(k)). The approximate entropy of a binary string­
the BiEntropy- could therefore be some function 9'(H(p(k))) for 0::; k < n. 

We must decide how to combine or weight the H(p(k)) in order to arrive at a function !1 that is likely 
to have some utility. The field of time series analysis [Makridakis et al, 2008] provides comprehensive 
guidance on a variety of methods (including moving averages & exponential smoothing) which are 
used to extract information from sometimes noisy historical time series. 

The H(p(k)) of a string for increasing or decreasing k is clearly a progression, possibly noisy, though 
not temporal. Exponential weighting would therefore be a first choice of weighting method. 
Exponential methods have the advantage that they can accommodate numerical series of arbitrary 
length- no matter how long the string all the H(p(k)) would make some contribution. 

A competing consideration is that each of the H(p(k)) is potentially independent of any other and so 
any weights must discriminate clearly between each H(p(k)). Although we could manipulate an 
exponential method to do this with an additional parameter, a simpler method would be to assign a 
polynomial weight such as 2k to each of the H(p(k)) (which vary between 0 and 1) thereby clearly 
separating the influence of each from the other. 

Since the H(p(k)) are not temporal, we could weight the H(p(k)) from the highest (k = n-1) to the 
lowest (k = 0) derivative or vice versa. For higher periods P, the dk only fall to zero at a higher k. For 
some strings the k-Ith derivative does not fall to zero at all, indicating that there is no periodicity in the 
binary string. Since we are attempting to measure the order and disorder of a binary string, if no order 
(i.e. periodicity) has emerged following the calculation of the n-llh derivative we should assign the 
highest weight to that derivative thereby indicating that that string is more disordered than other 
strings where the derivative falls to zero earlier (i.e. at a lower k) and is either periodic or eventually 
periodic. 

Other weighting methods could include none where the H(p(k)) are simply averaged and linear, where 
the H(p(k)) is a constant proportion of k. We have not evaluated either of these latter two methods. 

SBIENTROPY 

BiEntropy, or BiEn for short, is a weighted average of the Shannon binary entropies of the string and 
the first n-2 binary derivatives of the string using a simple power law. This version ofBiEntropy is 
suitable for shorter binary strings where n :5 32 approximately. 

n-2 

BiEn(s) = ( 1/ ( 2 '"1
- I))( L ((-p(k) log2 p(k)- (1- p(k)) log2 (1- p(k)))) 2k) 

IFO 

The final derivative d •. 1 is not used as there is no variation in the contribution to the total entropy in 
either of its two binary states. The highest weight is assigned to the highest derivative d._2• 

If the higher derivatives of an arbitrarily long binary string are periodic, then the whole sequence 
exhibits periodicity. For strings where the latter derivatives are not periodic, or for all strings in any 
case, we can use a second version ofBiEntropy, which uses a Logarithmic weighting, to evaluate the 
complete set of a long series of binary derivatives. 

n-2 n-2 

Tres BiEn(s) = ( 1/ L log2 (k+2) )( L (-p(k) iog2 p(k)- (I- p(k)) log2 (I- p(k))) log2 (k+2)) 
/FO IFO 
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The logarithmic weighting or (TBiEn for short) again gives greater weight to the higher derivatives. 
Depending upon the application, other weightings could be used. 

The BiEntropy algorithm evaluates the order and disorder of a binary string oflength n in O(n2
) time 

using O(n) memory. 

6 BIENTROPY OF THE 2-BIT STRINGS 

The BiEntropy of a 2-bit string is given in Table 2. 

Table 2 - The BiEntropy of a 2-bit string 

String Description BiEntropy 

00 Perfectly ordered 0 
01 Perfectly disordered I 
10 Perfectly disordered I 
11 Perfectly ordered 0 

Table 2 depicts the XOR operation and the computation of the binary derivative of a 2-bit string. 

7 BIENTROPY OF THE 4-BIT STRINGS 

We show in Tables 3A & 38 the layout of some simple Excel spreadsheets to compute the BiEn and 
TBiEn of a 4-bit string. We used a simple =IF statement to compute each bit of the derivatives. We 
show a graphic of the BiEn of the 4-bit strings in Figure I. The TBiEn graphic is very similar though 
the values of BiEn and TBiEn differ slightly. · 

Table 3A - Computing the BiEn of a 4-bit string 

1's n p (1-p) -p log(p) -(1-p )log(1-p) BiEn k l"k BiEn*2"k 
3 4 0.75 0.25 0.31 0.50 0.81 0 0.81 

0 2 3 0.67 0.33 0.39 0.53 0.92 I 2 1.84 
0 2 0.50 0.50 0.50 0.50 1.00 2 4 4.00 

7.00 6.65 

BiEn(s) 0.95 

Table 3B - Computing the TBiEn of a 4-bit string 

·, u .. \1) • l!t~'ll 
0 

1's n p (1-p) -plog(p) -(1-p)log(1-p) BiEn k log(k+l) BiEn'log(k+2) 

2 4 0.50 0.50 0.50 0.50 1.00 0 1.00 1.00 
2 
2 

3 0.67 0.33 0.39 
2 1.00 0.00 0.00 

0.53 0.92 I 
0.00 0.00 2 

1.58 
2.00 

1.46 
0.00 

4.58 2.46 

TBiEn(s) 0.54 
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Figure 1 -BiEn of the four-bit strings 

There are two perfectly ordered strings 0000 & 1111, two nearly ordered, periodic strings 0101 and 
1010, four intermediately disordered (nperiodic) strings where the left two bits are the 1 's complement 
of the right two bits and eight disordered (aperiodic) strings where either a single I or a single 0 
transits a four bit field. Note the general XOR structure of the table. Mean BiEn for the 4-Bit strings is 
0.594, standard deviation 0.389. Mean TBiEn is 0.644, standard deviation 0.355. 

8 BIENTROPY OF THE 8-BIT STRINGS 

We show in Figure 2 the BiEn of all 256 8-Bit strings. They are colour coded such that the periodic 
strings are white, nperiodic strings are light and dark yellow and aperiodic strings are dark orange. 
The diagram is structured such that the X and Y axes show the 4 bit strings of which each 8 bit string 
is comprised. The X and Y axes are sorted so that low BiEn or ordered 4 bit strings appear towards the 
top and left of the table and high BiEn or disordered 4-bit strings appear to the bottom and right. The 
Y-Axis corresponds to the first four bits of the string. Note that Figure 2 also has the general 
configuration of the XOR function. The white diagonal shows the zero and lower BiEn of the 16 
repeated 4-bit strings. The TBiEn diagram is identical in its main XOR partitions but differs slightly in 
the other two partitions. 

Figure 2 BiEn of the 4 and 8-bit strings 
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Using the BiEn (and TBiEn) metrics, exactly half of the 8-bit strings are classified as being nearly 
perfectly disordered (BiEn> 0.90). The last binary derivative of each of these strings is I. They are the 
aperiodic 8 bit strings. 16 strings, which comprise two repetitions of the same 4-bit string, are nearly 
perfectly ordered (BiEn< 0.10). The last derivative of each of these strings is 0. These are the periodic 
strings. The remainder are neither ordered nor disordered to a greater or lesser degree. These are the 
nperiodic strings- the last derivative is 0 but the entire string has no single period. BiEntropy is 
fractal from the self-similarity exhibited in Figures 1 & 2. Mean BiEn for the 8-Bit strings is 0.625, 
standard deviation 0.340. Mean TBiEn is 0.747, standard deviation 0.209. The BiEn and TBiEn of the 
8 bit strings are strongly correlated (Adjusted R2 = 0.85). 

We show in Figure 3 the distribution of BiEn and TBien for the 8-bit strings. BiEn & TBiEn do not 
reach 1.0. Were they to do so, the p(k) for all k<5, n-2 would have to be exactly 0.5, which is impossible 
ask is odd at least once for all n 2: 3. Note that in the absence of a closed form solution for determining 
the BiEntropy of a finite binary string, BiEntropy has to be determined empirically. 

Figure 3 - Distribution of the BiEntropy of the 8-bit Strings 
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Figure 4 shows the BiEntropies of the 8-bit strings in ascending order and further illustrates the fractal 
nature of B iEntropy. 

Figure 4 BiEntropy of the 8-bit strings in ascending order 
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BiEn and TBiEn differ somewhat in their distributions and the way in which they order the nperiodic 8 
bit strings. They order the periodic and aperiodic 8 bit strings in the same way. The comparative utility 
of BiEn and TBiEn will have to be determined experimentally. 
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9 BIENTROPY OF THE PRIME NUMBER SEQUENCE 

9.1 The Binary Encoded Primes (BEP's) 

Consider the q natural numbers starting from 2: 

2, 3, 4, 5, 6, 7, 8, 9, IO, 11, 12, 13, I4, I5, I6, 17, 18, I9 ..... 

We can encode them in a binary string B oflength n (1 !S n !S q) such that the primes are encoded as I 
and the composites as 0. B1 is the ith digit of B (i;::: 1 ). 

1, 1,0, I,O, I,O,O,O, I,O, I,O,O,O, 1,0, 1. .... 

Thus Bh corresponding to the natural number 2 is I and B4, corresponding to the natural number 5 is 
also I. We can easily compute the logarithmic BiEntropy of strings B for all n (2 !S n::; q) which we 
show in Figure 2 for q = 512. 

Figure 5- The Logarithmic BiEntropy (TBiEn) of binary encoded primes < 512 

BiEntropy of the Primes< 512 

1.0000 

0.9500 
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We can see that the logarithmic BiEntropies of the binary strings corresponding to the primes< 5I2 
are close to 1.0 and that these strings are mostly (but not exclusively) aperiodic. This result is implicit 
due to the Prime Number Theorem. The BiEntropy dip around II4-I36 corresponds to a long 
sequence of composites broken by only two primes. 

There are some simple corollaries regarding the periodicity of the primes which follow directly from 
Nathanson's definitions of periodicity for infinite binary strings. 

COROLLARY ONE- THE SEQUENCE OF PRIME NUMBERS IS NOT PERIODIC 

Consider a binary string B of even length n (n;::: 4) containing the binary encoding of the primes as 
above starting from 2. 81 is the ith digit of B (i ~ 1). The binary string B is periodic if, for some positive 
integer p, B l+p = B, for alii ::; i ::; n. 

This is impossible for p = 1 because the even numbers are composite. This is also impossible for p ;::: 2 
because: 

a) both B1 = I and B2 = 1 (because both 2 and 3 are prime) and 
b) no further pairs of natural numbers which are adjacent primes can occur because the even 
numbers are composite. 
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Hence the binary string B corresponding to the primes is not periodic for all even values of n (n 2: 4) 
for all p 2: 1. The binary string B of length n = 2 corresponding to the first two primes 2 & 3 is 
periodic with p = 1. We choose not to compare strings of unequal length which would be necessary if 
nwas odd. 

9.2 The Prime Encoded Non-Negative Integers (PENNI's) 

Consider the r non negative integers: 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, II, 12, 13, 14, 15 ..... 

We can encode them in a binary string E (after Eratosthenes) oflength n (I :5 n :5 r) such that the 
primes are encoded as 1 and the non primes (0 and I) and composites are encoded as 0. Ej is thejth 
digit of E (j 2: I). 

0,0, I, 1,0, 1,0, 1,0,0,0, 1,0, 1,0,0 ..... 

Thus E], corresponding to 0 is 0 and £ 4, corresponding to the natural number 3 is I. We can again 
compute the logarithmic BiEntropy of strings E for all n (2 :5 n :5 512) with results almost identical to 
those depicted in Figure 2 and omitted for brevity. 

There follows a second simple, but differing corollary, which demonstrates that the PENNI's (which 
includes the primes) are not periodic, but in a way that emphasises the complete absence of all 
periodicity. 

COROLLARY TWO- THE PENNI'S ARE NOT PERIODIC 

Consider a binary string E of even length n (n 2: 4) containing the binary encoding of the primes and 
the non-negative integers as above starting from 0. Ei is thejth digit of E (j 2:1). The binary string E is 
periodic if, for some positive integer p, E f+p = Ei for alii :'Sj :5 n. Let ep,kj be thejth character of the 
kth period of E for period of length p (p, k, j 2: 1). We show in Figure 6 the periodicities of the primes 
and the composites for various small p starting from the origin, 0. There is no other natural number 
which is the origin of all the primes and all of the composites. We choose not to compare strings of 
unequal length which would be necessary if n was odd. 

Figure 6 The Periodicities of the Primes and the Composites 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

P=-1 11 01 11 01 11 oi 01 oi 11 oi 11 01 01 
P=2 1M 11 0 11 0 01 0 n 0 11 0 01 
P=3 0 0 111 0 1111 1 ol 0 0 11 0 1 01 0 

P=4 0 oM 11 0 1M 11 0 0 0 n 0 1 0 01 
P=S 0 0 1 1 • 0 1 0 • 1 0 1 01 0 

P=6 0 oM 1 0 n 0 1M 0 0 n 0 1 0 0 

P=7 0 0 1 1 0 1 • 0 0 0 1 0 1M 0 

Note that for each period p where pis prime and p 2: 2, ep,2,1 is not equal to ep,3,1 because ep,2,1 marks the 
first occasion where p is known to be prime, after the algorithm of Eratosthenes, and ep,J, 1 marks the 
first non prime multiple of p which occurs in the first occasion of the following period. Where p is 
even ep, 1,3 is not equal to ep,2,3 because 2 is the only even prime. For p =I, there is an absence of 
periodicity not least because both the even numbers and the odd numbers are periodic with period 2. 
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H;ence the binary string E corresponding to the PENNI's is not periodic for all even n ( n 2: 4) for all p 
2: 1. Corollary One proves explicitly that the -sequence of prime numbers is not periodic. Corollary 
Two is necessary to demonstrate explicitly the total absence of periodicity in the sequence of prime 
numbers for all even sequences for all periods from the origin 0. 

10 BIENTROPY OF SOME 7*5 DOT MATRIX PRINTER CHARACTERS 

We obtained [Mitchell, 2008] the binary patterns corresponding to the 96 Alphabetic (upper and lower 
case), Numeric and Punctuation characters of the US ISO 646 7-bit character set. We arranged each of 
these characters in a 7*5 array and computed the Horizontal and Vertical Binary BiEntropies of these 
strings using Horizontal and Vertical Raster scans, both of which were 35 bit binary strings. 

By way of comparison, we used the random number generator within Microsoft Excel 2003 to create a 
set (RANDOM) of 96 randomly generated 7*5 dot matrix characters where p(O) of the 35 bit array 
was 0.5. We also used the 6 bit Braille [Jimenez et al, 2009] dot-pattern (BRAILLE), arranged as 3*2 
array superimposed on the central 5*3 bits of a 7*5 grid. Finally, we designed twelve 7*5 dot matrix 
characters to exhibit High Entropy (HECS) and a further twelve to exhibit Low Entropy (LECS). We 
show samples from each character set in Table 4A & their average BiEntropies in Table 4B. 

Table 4A- Samples from five character sets with differing BiEntropies 

HECS RANDOM ISO BRAILLE LECS 

~ :!:i! A I .. .. .. . . 
~~ ~ B .. m .. ::or..: .. . . 
~ ff c :I: .. .. .. ..... , 
~ ~ 0 . D .. '" .. 
~ .. :f a . •• . ... 

'" .. .. 
~ ~ .. b . a .. .. ... 
~ ~ c .. . . ¢-... .. .. 
~ ;.;.; d . 8 .. .. ... 
!l,jj a:. . . m .. '" '" 
a- .: > .. B .. .. .. . . 
!.!;,. !i;i ? tll 

'" '" 
~ .. ~ .. I!! .. m 

'" 

Table 4B- The BiEntropy of Some 7*5 Dot Matrix Character Sets 

BiEn BiEn TBiEn TBiEn 
Character Set Mean Stdev Mean Stdev N 

HECS 0.945 0.006 0.947 O.Oll 12 
RANDOM 0.634 0.240 0.876 0.168 96 
ISO 0.494 0.291 0.844 0.117 96 
BRAILLE 0.068 0.053 0.661 0.124 64 
LECS 0.014 0.012 0.622 0.205 12 

The BiEntropies of each of the five character sets are distinguished from each other (p < 0.01) by the 
BiEn metric, though note that HECS and LECS were designed to be such. For the THiEn metric, 
HECS & ISO, ISO & BRAILLE and ISO & LECS were distinguished from each other (p < 0.01 ). 
BiEn penalises zero upper derivatives more heavily than THiEn but note that both metrics place the 

Copyright 0 2013 Grenville J. Croll. All Rights Reserved 

222 



groups in the same order. Note that binary S!:fings with a length 2: 35 may contain these characters 
during the evaluation of their 35th last derivative. 

11 BIENTROPY OF SOME IRRATIONAL, NORMAL AND PSEUDORANDOM NUMBERS 

We obtained the first million digits ofthe decimal expansions of lt, e, .,J2 and .,JJ from the internet 
[Nemiroff & Bonnell, 1994][Andersson, 2013]. We also obtained a set of one million random decimal 
digits produced by the RAND corporation almost 60 years ago [RAND, 2001]. We obtained one 
million random decimal digits from Excel2003 (Service Pack 2) and Exce12010 using 200,000 
consecutive calls to the RAND() function formatted as a five digit integer with leading zeroes. We 
created the first million digits of the [Champemowne, 1933] number, CHAMP, which is proven 
normal. For each expansion we computed BiEn(s) for the first 1,000 then the first 10,000 and then the 
first 30,000 consecutive sections each of lengths= 32 bits starting at the first digit. From the decimal 
expansions, we encoded digits 0-4 as 0 and S-9 as 1. We show the mean and standard deviation of 
BiEn for each set of strings in Table 5. 

Table 5- The BiEntropy of Some Irrational, Random and Normal Numbers 

Number/Set Mean Stdev Mean Stdev Mean Stdev 
N=l,OOO N=lO,OOO N=30,000 

PI 0.6190 0.3367 Q:6JOZ 0.3346 0.6283 0.3361 
EXCELlO 0.6260 0.3422 0.6286 0.3381 0.6281 0.3374 
CHAMP 0.6707 0.3763 0.6180 0.3443 0;6263 0.3353 
SQRT(2) 0.6171 0.3400 0.6267 0.3384 0.6254 0.3384 
EXCEL03 0.6271 0.3310 0.6237 0.3364 0.6250 0.3370 
SQRT(3) 0.6408 0.3321 0.6307 0.3356 0.6247 0.3375 
E 0.6425 0.3341 0.6243 0.3388 0.6235 0.3376 
RAND 0.6288 0.3382 0.6179 0.3385 0.6217 0.3374 

The BiEntropy of the RAND string is significantly different from (i.e. lower than) the BiEntropy of 
the decimal expansions oflt and the Excel2010 random digit string (p < 0.05) for 10,000 and 30,000 
trials and from Champemowne's number for 30,000 trials. The BiEntropies of the irrational, Excel 
RNG and Champemowne strings are not significantly different from each other for 30,000 trials. Note 
that there are 232 potential entropy states for the 32 bit BiEn function. The sample sizes used in this 
study constitute a minute proportion of this state space. 

We performed a further range ofBiEntropic analysis on this data using strings varying in length from 
16 bits up to 256 bits. We used BiEn for the shorter string lengths and TBiEn for string lengths> 32. 
We used in addition an alternative encoding whereby each decimal digit 0-7 generated a bit string 000-
111, decimal 8 generated 0 and decimal 9 generated 1. We did not find any statistically significant 
differences between the BiEntropies of any of these strings save the expected occasional spurious 
result. Except that we found the result for the RAND string compared with lt, Excel 10 and 
Champemowne's number confirmed (0.1 < p < 0.001) in the alternative binary expansion when 
measured by the 32 bit BiEn function for 75,000 trials. 

We show in Figure 5 the frequency distribution ofBiEntropy for all eight digit strings for N=l,OOO 
trials. We show in Figure 6 the initial slow progress of convergence by averaging BiEntropy for the 
first 2, 3, 4 ... 1000 values for each series. Other work has explored deficits from maximal irregularity 
for the same irrationals [Pincus & Kalman, 1997]. 
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Figure 5 Frequency distribution of BiEn for the first 1,000 32-bit strings 
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Figure 6 Mean BiEntropy for the first 1000 32-bit strings 

1 01 201 ~ 401 501 . 601 701 601 901 

12 BIENTROPY OF SOME PLAIN AND ENCRYPTED SPREADSHEETS 

We created and/or obtained four large Excel Spreadsheets each of which had a file length of 
approximately 175 Kilobytes. We encrypted each spreadsheet using the weak Office 97 and strong 
128 bit AES algorithms supported in Excel2003. We computed TBiEn, using a simple C routine, for 
1,000 sections each oflength 1,024 bits for each encrypted or unencrypted spreadsheet file using the 
unmodified raw binary data of each file. The contents of each spreadsheet and the values ofTBiEn are 
given in Table 6. 

Table 6- The Logarithmic BiEntropy of Some Plain and Encrypted Spreadsheets 

Spreadsheet Encryption TBiEn (1024 bit) 
N=l,OOO 

Mean Stdev 
Numbers (all cells= 123) None 0.8980 0.0732 
Numbers (all cells= 123) Office 97 0.9913 0.0545 
Numbers (all cells= 123) AES 0.9913 0.0545 
Random Numbers None 0.9857 0.0559 
Random Numbers Office 97 0.9913 0.0545 
Random Numbers AES 0.9914 0.0545 
Address Database None 0.9428 0.1770 
Address Database Office 97 0.9913 0.0545 
Address Database AES 0.9913 0.0545 
Financial Model None 0.9450 0.1736 
Financial Model Office 97 0.9912 0.0545 
Financial Model AES 0.9911 0.0545 
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The BiEntropies of all the encrypted files differ from their unencrypted counterparts (p < O.oJ ). All 
the unencrypted spreadsheets are distinguished from each other (p < 0.0 I) except for the Address 
Database I Financial model pairing. The BiEntropy reflects the file contents. The unencrypted file with 
the lowest entropy had the numeric constant 123 in every cell. The unencrypted file with the highest 
entropy had random number values in every cell. The entropy of the address database and the financial 
model were similar, lying between the other two extremes. BiEntropy has not distinguished between 
the two encryption methods. BiEntropy has, of course, no knowledge of the Excel file structure. 
Figure 2 implies that only half of all binary strings are fully aperiodic, which may have implications in 
the cryptographic security of key bit strings. 

13 BIENTROPY OF UK STOCK MARKET PRICE CHANGES 

We obtained [Yahoo, 2012] the UK FTSE daily closing prices for the near ten year period 11112003-
22/8/20 12. These were provided in an Excel spreadsheet with the rows representing the days and the 
columns representing the I 00 largest companies in the FTSE index. We deleted rows corresponding to 
weekends and bank holidays, and columns where the company had not been FTSE quoted for the 
entire period. The resulting spreadsheet had 2,452 rows i and 71 columnsj containing FTSE data in a 
contiguous array P,J with no zero values. 

We created a second binary array T,J which recorded absolute price changes between one day and the 
next, starting at the second day (first day= 0). We used a threshold R, (0.00 :S R :S 0.03) such that: 

if ABS ( P,J I P,_1J - 1 ) > R then T,J = 1 else T1J = 0 

We used the Excel RAND() function and an Excel Data Table [Tyszkiewicz & Balson, 2012] to 
facilitate the repeated selection of 1000 start prices Sk from P,J where i and j were uniform random (I 
:S i :S 2200 and I :Sj :S 71) and a corresponding set of closing prices Ck. where Ck = P,+dJ (32 :S d :S 63). 

We calculated a set of holding returns 

And a corresponding set of 32 bit BiEntropies Bk using T;J through T1+31•1• 

We implemented the spreadsheet such that we created values of Bk andH,separately for each of 32 
values of d and 7 values of R. We sorted the Holding Returns H, by descending BiEntropy Bk and 
computed the mean holding return for the upper and lower BiEntropy deciles (by summing the I 00 
closing prices and dividing by the sum of the I 00 opening prices for each of the two deciles ). 
When analysing the Mean Holding Returns and the BiEntropies for each of the 7 individual values of 
R, we were unable to find any statistical significance for d. We show in Table 7 the Holding Return 
observed for all R 2: 0 for all d for the upper and lower BiEntropy deciles. 

Table 7 High & Low BiEntropy- Mean Holding Return for various R 

Upper BiEntropy Decile Lower BiEntropy Decile 
Mean Mean 
Holding Holding p Sparsity% 

R Return S.D. Return S.D. (n=32) T,j 

0.000 1.0249 0.0328 1.0393 0.0406 49.04 
0.005 1.0442 0.0401 1.0238 0.0437 <0.10 36.55 
0.010 1.0552 0.0513 0.9964 0.0196 <O.Ql 25.44 
O.o15 1.0593 0.0573 1.0000 0.0141 <0.01 17.45 
0.020 1.0543 0.0443 1.0030 0.0155 <0.01 11.95 
0.025 1.0452 0.0509 1.0054 0.0115 <0.01 8.38 
0.030 1.0342 0.0301 1.0098 0.0101 <0.01 6.00 
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We replaced a very small number of outliers where the Holding return was more than 3 S.D. from the 
mean for R < 0.03. For R = 0.03 the Holding Return for the lower BiEntropy decile was probably 
bimodal as 7 closely spaced results with a Holding Return<< 1.00 were replaced. The significance 
and sense of the reported result was unchanged. For R > 0.02, the sparsity ofT IJ was such that the 
lower BiEntropy decile contained more than 100 zero entries. 

The mean holding return for FTSE stocks held for an average period of 48 days was approximately 
4% higher for stocks which had exhibited more disordered (higher BiEntropic) behaviour at the 
beginning of the observed period compared with stocks which had exhibited more periodic (lower 
BiEntropic) behaviour (p « 0.01). The effect was not observed without a threshold R ~ 0.005. 

Subsequent analysis of the data for all R > 0 showed that d also had a small positive effect of 1.3% for 
d= 32 on the holding return (p < 0.05). 

The above analysis was performed using the 32 bit logarithmic TBiEn function. There were no 
statistically significant results to report using the 32 bit power law version of BiEn. 

14SUMMARY 

We have described the BiEntropy algorithm and investigated its basic performance on 2, 4 and 8 bit 
binary strings. We have demonstrated that we can rank binary strings of arbitrary length in terms of 
the relative order and disorder of all of their digits. Our method is very simple and is based upon the 
use of the Exclusive Or function and some arithmetic weights. We show that BiEntropy is fractal such 
that the ordering method is consistent across strings of arbitrary length. 

We used the BiEntropy function to investigate the order and disorder in the sequence of prime 
numbers. We showed that BiEntropy determined that the sequence of early prime numbers was 
disordered. We proved explicitly that the sequence of prime numbers is not periodic. 

We then evaluated some 5*7 ISO dot matrix printer characters and some randomly generated 
characters on a similar 5*7 grid. Using the insight gained from BiEn, we designed a Low Entropy 
Character Set (LECS) and compared these characters with others from a High Entropy Character Set 
(HECS) which we also designed. We measured the BiEntropy of the characters of the Braille character 
set and showed for the first time that Braille is also a low entropy character set. The LECS character 
set is visually distinctive and easily extensible. It may provide a rational basis for extending the Braille 
methodology to a significantly wider character set and user base. 

We then used BiEntropy to determine the relative order and disorder of consecutive 32 digit sections 
of some long expansions of some well-known irrational numbers including pi and e which we 
compared with Champernowne's normal number and outputs from the Excel2003 and Exce12010 
RNG's. Despite the well known problems [McCullough, 2008] with the Excel RNG's we show that 
we cannot distinguish between the Excel RNG output and normal and suspected normal numbers 
using the 32 bit BiEntropy method. 

We examined some plain and encrypted Excel spreadsheets and show that BiEntropy is able to clearly 
distinguish between them in the absence of any knowledge of the Excel file structure. 

We examined ten years worth of daily UK stock market prices. We showed that investors prefer- i.e. 
pay more for- stocks that exhibit prior disordered behaviour. This result, if confirmed, will have 
significant implications for global financial markets [Croll, 2007 & 2009]. It is possible that entropy 
options may emerge as a means of profiting from and then neutral ising the illustrated effects. There is 
in principle hidden information in any time series. Statistical time series methods may need to be re­
examined in the light of these results. 
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15 FURTHER WORK 

Given the successful application ofBiEntropy in the five diverse fields outlined above, it is likely that 
BiEntropy will be widely applicable. We are working on the use ofBiEntropy in Bit String Physics 
[Noyes, 1997]. We keenly anticipate any results which may follow from BiEntropic analysis of the 
binary encoding of the four bases of the human genome. 
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Duality, Chirality and Singularity 

Peter Rowlands 

Department ofPhysics, University of Liverpool, Oliver Lodge Laboratory, Oxford St, 
Liverpool, L69 7ZE, UK. email p.rowlands@liverpool.ac.uk 

Abstract. Duality, chirality and singularity are identified as necessary 
consequences of a nilpotent structure emerging from a universal rewrite 
system. The fundamental requirement incorporates two vector spaces, 
each containing the same information but differently organized because 
the minimal structure requires that the rotation symmetry of one space is 
preserved while that of the other is broken. Many applications follow. 

Universal rewrite as a source of fundamental theory 

A long series of researches presented at successive ANP A meetings 
and to a large extent summarised in Rowlands (2007) has indicated that a 
universal rewrite system can be seen as a foundation or basis for aspects 
of mathematics, physics, chemistry, biology, computer science and 
systems theory. It appears to be a natural information-processing theory 
which can be described on a very general basis and is a strong candidate 
for the driving process which is responsible for the behaviour of self­
organizing systems. The rewrite structure was devised in collaboration 
with Bernard Diaz (Rowlands and Diaz, 2002, Diaz and Rowlands, 
2005), and one of its most significant consequences appears to be a 
fundamental symmetry between the physical parameters space, time, 
mass and charge, long explored by the author, and explicable on the basis 
of an evolution of a Clifford-type algebra through successive stages 
representing real numbers, complex numbers, quaternions and 
multivariate vectors, and so organized as to lead to a zero-totality 
universe, as speCified in the rewrite process. In effect, 'physical' 
properties seem to be entirely explicable in terms of algebraic ones. 

When the information from this symmetry is compactified into a 
minimal form, the result appears to be a form of relativistic quantum 
mechanics, based on nilpotent or zero-norm wavefunctions. Many aspects 
of particle physics and of gravity seem to emerge as particular 
consequences of either the ftmdamental symmetry or the nilpotent 
quantum mechanics, or some combination of them. The rewrite 
mechanism, however, would appear to have an even wider application, 
and results obtained in genetics, in collaboration with Vanessa Hill (Hill 
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and Rowlands, 2008, 20lla and b), and in systems theory, in 
collaboration with Peter Marcei (Marcer and Rowlands, 201 Oa, b and c), 
can be seen as either emerging from the rewrite mechanism or massively 
extending it into new domains. In addition these results often parallel 
similarly-structured results obtained in fundamental physics. The thing 
that emerges most strongly is that various fundamental ideas emerge at 
each stage in the rewrite process and in each of the separate areas of 
investigation. The same patterns are seen at different levels of 
complexity, and it is largely because of this that complex beings such as 
ourselves are able to understand simpler foundations, though only after 
multiple iterations from our starting assumptions. Three particularly 
important ones are duality, chirality and singularity. 

Universal Rewrite - Fundamental Symmetry 
Space, Time, Mass, Charge - Nilpotent 

Quantum Mechanics 

1 ><:: 1 
~ // I Particles I 

/,/ l_--==._j ,' .............. ,,' ................ ... 

_,,/,/ 
_ ...... ;/ ....... 

.............. ,# ............. ,' 
-·· 

~ ... -------· ~ c=J +-----------------+ ~ 

Universal Rewrite and Fundamental Theory 

direct connections +-----------• parallel developments 

Rewrite systems: conventional and universal 

Rewriting is a general process involving strings and alphabets, and is 
classified according to what is rewritten - strings, terms, graphs, etc. A 
rewrite system is a set of equations that characterises a system of 
computation that provides one method of automating theorem proving 
and is based on the use of rewrite rules. In rewriting we are concerned 
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with much the same components as in languages and grammars, namely 
an alphabet (ftnite or not) with symbols, strings or words, sentences and 
expressions; and also rules governing what is rewritten and how it is 
rewritten. All computer programming based on the Turing machine can 
be described in terms ofa rewrite (or production) system. A conventional 
rewrite system requires 4 fixed components: 

alphabet 
rewrite rules (productions) 
a start 'axiom' or symbol 
stopping criteria 

The generation of Fibonacci numbers provides a convenient example. 
Here we have: 

alphabet: 
stopping criteria 
start axiom 
rules (productions) 

AB 
none 
A 
pl: A~B 
p2: B~AB 

We start with generation 0, and the single symbol A Apply rule pl, and 
replace A with B. In generation 2, B becomes AB. Now, A becomes B, 
and B becomes AB ... etc. 

N=O A length 1 
N=l ~B 1 
N-2 ~AB 2 
N=3 ~BAB 3 
N--4 ~ABBAB 5 
N-5 ~BABABBAB 8 
N=6 ~ ABBABBABABBAB 13 
N=7 ~BABABBAB ... 

We may notice how A ~ B and B ~ AB reproduce the structure of 3-
dimensional algebra 

A string like ABBABBABABBAB seems to be creating a fractal-like 
structure in 3-dimensional space, but in the plane. The logarithmic spiral 
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continually extends the structure along the 2 dimensions of the plane 
because it is unable to extend into the third dimension. 

In addition to conventional alphabets, it is possible to create a ,universal 
alphabet - an alphabet used in a universal rewrite system. A universal 
rewrite system is one which allows all four elements - alphabet, start 
object, rules, stopping criteria- to be varied. At the beginning of such a 
system the alphabet is often the same as the start object. Perhaps the 
alphabet is also the rules. One universal alphabet allows us to do this if 
we assume the universe or any alphabet within it is always entirely 
nothing. The principal and only assumption is a zero totality state, with 
no unique description, that is infmitely degenerate. In other words, we 
have to keep describing the alphabet in a way that ensures that it is 
always new, but still zero. 

The start position is zero - but is any such state and not unique; and 
there is no limit or stopping criteria - because the final state is also 
always zero. We can conceive it as defming a zero attractor. Any nonzero 
deviation from 0, say R, necessarily incorporates an automatic mechanism 
for recovering the zero, say 'conjugate' R*. But the zero totality (R, R*), 
does not defme a unique zero, and must always defme a new structure. 
We know that the new structure is new because it defmes the position of 
the previous structure, in this case (R, R*), within it. The process then 
continues indefmitely. In effect, we defme a series of cardinalities, but 
ones based on zero, rather than on infmity. 

The process is most conveniently displayed (though not defmed) by a 
'concatenation' or placing together, with no algebraic significance, of the 
alphabet with respect to either its components ('subalphabets') or itself. If 
the alphabet describes a cardinality or totality, then anything other than 
itself will necessarily be a 'subalphabet' and the concatenation will yield 
nothing new. The only other option will be concatenation with itself, 
which, to ensure that the cardinality is not unique, must yield a new 
cardinality or zero totality alphabet. 

The condition create symbolised by ~ means that every alphabet 
produces a new one which subsumes itself as a component. The condition 
conserve symbolised by ~ means that nothing new is created except by 
extending the alphabet. Creation is always of a new zero. The process can 
be recursive, creating everything E (all symbols) at once, or iterative, 
creating one symbol only. In fact it is both iterative and recursive. The 
process is fractal and can begin or end at any stage. Self-similarity exists 
at all stages. It exists before time - in fact, it creates time. That is, the 
condition of non-unique cardinality requires that 
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(subalphabet) (alphabet)--+ (alphabet) 
(alphabet) (alphabet)~ (new alphabet) 

there is nothing new 
the zero totality not unique 

The nature of the new alphabet produced by ~ will always be detennined 
by the need to satisfy --+ in all possible cases. 

We can only find out what a new alphabet will look like when we have 
worked out all the ways in which concatenation with its subalphabets will 
yield only itself. Suppose, then, that our !rrst zero totality alphabet has the 
fonn (R, R*). Applying the consetve mechanism (--+) by concatenating it 
with its subalphabets should produce nothing new. So 

(R) (R, R*) --+ (R, R*) 
(R*) (R, R*) --+ (R*, R) = (R, R*) 

No concept of 'ordering' is required by concatenation, but each term must 
be distinct, so we can easily show that these concatenations lead to rules 
oftheform: 

(R) (R)--+ (R) ; (R*) (R)--+ (R*) ; (R) (R*) --+ (R*) ; (R*) (R*)--+ (R) 

Any given zero-totality alphabet such as (R, R*), however, cannot be 
unique, and concatenation with itself (or 'create'), symbolised by ~. 
must produce a new conjugated alphabet, and the new alphabet can only 
be guaranteed to be new if it also incorporates the old. Something like 
(A, A*), with the terms undefined, would be not be distinguishable from 
(R, R*), but (R, R*, A, A*) would be if (A, A*) was distinguishable from 
(R, R*). In addition, (R, R*, A, A*) must be defmed in such a way that the 
consetve mechanism still applies, so concatenation with the subalphabets 
yields nothing new. 

(R) (R, R* ,A, A*)--+ (R,R* ,A, A*) 
(R*) (R,R* ,A,A*)--+ (R*, R,A* ,A) 
(A) (R, R*,A,A*)--+ (A,A*,R*,R) 
(A*) (R,R* ,A, A*)--+ (A*, A, R, R*) 

The listing or order of the terms is different, but there are no new ones. 
We guarantee that (R, R*) and (A, A*) can only be different by making 
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A A = R*, etc., while R R = R 

At the next stage, we have a new problem, for 

(R, R* ,A, A*) (R,R*,A,A*) => (R, R*,A,A* ,B, B*) 

would produce new concatenated terms like AB, AB*, which are not in 
the alphabet, when we apply the consetve mechanism ( ~ ). So we include 
these in advance, as in 

(R, R*,A,A*) (R, R*, A, A*)=> (R,R*,A, A* ,B, B* ,AB,AB*) 

but we have to check that the conserve operation with (R), (R*), (A), (A*), 
(B), (B*), (AB), (AB*) successively concatenated with this alphabet leaves 
the alphabet unchanged. The process is straightforward for the frrst six 
operations: 

(R) (R, R*,A,A*,B, B*, AB,AB*) ~ (R,R*,A,A*, B, B*,AB,AB*) 
(R*) (R, R* ,A, A* ,B, B* ,AB,.,AB*) ~ (R*, R,A* ,A,B*, B,AB* ,AB) 
(A) (R,R*,A,A*,B, B*,AB,AB*) ~ (A,A*,R*, R,AB,AB*, B,B*) 
(A*) (R, R* ,A,A *, B, B*, AB,AB*) ~(A* ,A,R, R* ,AB*, AB, B*, B) 
(B) (R,R*,A,A*,B, B*,AB,AB*) ~ (B,B*,AB,AB*,R*,R, A, A*) 
(B*) (R,R*,A,A*,B, B*,AB,AB*) ~ (B*,B,AB*,AB, R,R*,A*,A) 

However, when we come to the operations of the concatenated tenus, 
such as (AB) and (AB*) on themselves and on each other, we have to 
choose between the 'commutative' and 'anticommutative' options: 

(AB)(AB) ~ (R) (commutative) 
(AB)(AB) ~ (R*) (anticommutative) 

It quickly becomes apparent that the decision has already been made, for 
only the anticommutative option leads to something new. The 
commutative option leaves A and B indistinguishable and so does not 
extend the alphabet. We therefore have no option but to default on the 
anticommutative option, and the last two concatenations become: 

(AB)(R, R* ,A, A*, B, B*, AB,AB*) ~ (AB,AB*,B, B* ,A, A*, R* ,R) 
(AB*) (R, R*, A, A*, B, B*, AB, AB*) ~ (AB*, AB, B*, B, A*, A, R, R*) 
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The process cannot be repeated by introducing new terms, such as (C), 
(D), etc., when the alphabet is extended stages because some 
inconsistency will always emerge at some point in the analysis. 
Anticommutativity produces a closed 'cycle' with components (A, B, AB) 
and their conjugates, and excludes any further terms from anticommuting 
with them. However, the extension can be made if (C), (D), etc., 
constitute a new anticommuting cycle, and the repetition of this process 
can continue to infmity. The terms in anticommuting combinations such 
as (C), (D); (E), (F); (G), (H), etc., become uniquely distinguishable 
because each has a unique partner. 

The alphabets which emerge from this create process (=>) are 
constructed from an indefinitely extended series of identically structured 
closed anticommutative cycles, each of which commutes with all others. 
Essentially the same structure is familiar to us as the infinite series of 
fmite (binary) integers of conventional mathematics. The closed cycles 
constitute an infmite ordinal sequence, establishing the meaning of both 
the number 1 and the binary symbol 1 as it appears in classical Boolean 
logic as a conjugation state of 0, and the alphabets structure themselves as 
an infmite series of binary digits. The general process can be represented 
in symbolic form: 

~. (R) 
~b (R,R*) 
~o (R,R*,A,A*) 
~d (R,R*,A,A*,B,B*,AB,AB*) 
~e (R, R*,A, A*,B, B*, AB,AB*, C, C*, 

AC,AC*,BC,BC*,ABC,ABC*) ... 

And the algebraic structure generated by universal rewrite is a Clifford 
algebra constructed out of an infmite sequence of quaternionic units: 

(1, -1) 
(1, -1) 
(1, -1) 
(1, -1) 
(1, -1) 
(1, -1) 

X (1, i1) 
X (1, i,) X (l,j!) 
X (1, i1) X (1,jl) 
X (1, i1) X (l,j,) 
X (1, i1) X (l,j,) 

X (1, i2) 
X (1, ~) x (1,j2) 

X (1, ~) x (1,j2) 
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Repetition is clearly established at the fourth stage. At this point we 
have what can be recognised as a Clifford algebra - the algebra of 3-D 
space. However, the independent existence of all four stages as 
descriptions of the universe requires a combination equivalent to the sixth 
stage, which is itself equivalent to a double Clifford algebra, or the 
algebra created by two vector spaces. 

Some key numbers 

The universal rewrite structure is based on zero totality, which 
automatically requires duality, and the number 2 (the conserve process). 
It is infinitely degenerate in its generation of zeros, and new ones are only 
generated when 'products' are anticommutative, which introduces the 
number 3 (the ·create process). The groups and structures which are 
significant in nature seem to involve symmetries based on just these two 
numbers - singly or repeated. The number 5, which emerges in the 
combinations, is always a symmetry-breaker and introduces chirality and 
singularity. The way these basic integers interact to produce the spectrum 
of the ftmdamental particles can be seen in the following table, adapted 
from Hill and Rowlands (2011 b). Here the second column represents 
quarks q, each of which comes in 3 colours, the third leptons 1, while the 
fourth gives the total number of fermions (quarks +leptons) f Adding 
this to the total number of bosons (b) in the fifth column produces the 
total number offermions + bosons. 

Table of fundamental particles based on basic symmetries 

q l I b 

1 3 1 = 4 1 - 5 
2 6 2 - 8 2 - 10 s 
3 9 3 - 12 3 - 15 G 
4 12 4 - 16 4 - 20 s I 
5 18 6 - 24 6 - 30 s G 
6 24 8 - 32 8 - 40 s I A 
7 36 12 = 48 12 - 60 s I G 
8 48 16 - 64 16 - 80 s I A v 
9 72 24 = 96 24 - 120 s I A G 
10 144 48 = 192 48 - 240 s I A v G 
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Successive rows are multiplied by factors of 2 or 3 as we supply the 
symmetries S, I, A, V and G. S refers to 2 states of spin, I refers to 2 weak 
isospin states (up I down quark, electron neutrino I electron, etc.), A refers 
to the duality of particle and antiparticle, V to the duality of particle and 
vacuum. G is the generation. So, in the first row, q = 3 stands for the 3 
colours of up quark and 1 = 1 for the associated lepton, the electron 
neutrino. In the first row, there will be just 3 colours of the up quark and 
1 lepton, the electron neutrino, each in just one spin state. The first 
doubling comes from assuming 2 spin states (S). This gives us the second 
row. Alternatively, we can take one spin state of the equivalent of the 
quarks in each generation (up, charm, top), along with the 3 neutrinos. 
This is the meaning of the third row. Ultimately, the fmal row will give us 
3 generations (G), each with quarks and leptons with 2 states of isospin 
(I) (up I down, electron neutrino I electron; charm I strange, muon I muon 
neutrino; top I bottom, tau I tau neutrino), each with 2 states of spin (S); it 
will also provide the equivalent antiparticles (A), and both the real and 
vacuum versions of the particle states (V). In addition, there will be one 
boson for every four fermions I antifermions, so leaving us with a total of 
240 possible states, as in a model based on the root vectors of the E8 
group. While the factors of 3 come from the 3 colour states and G, and 
the factors of 2 from S, I, A and V, the multiples of 5 come from adding 
boson states to fermion states, a natural symmetry-breaking. There are, in 
all, 4 dualities, relating, respectively, to space (S), charge (1), time (A) and 
mass (V); and two 3-dimensionalities, one for the quark colours and one 
for the generations, relating to the respective 3-dimensionalities of space 
and charge. As we will see for the nilpotent structures of the particles 
themselves, one of these (the generations) relates to the entire set of the 
states, while the other (the quark colours) forms a self-contained structure 
within it. Combining two 3-dimensionalities in this way always creates 
such an asymmetry. 

Though the table here represents fundamental particle structures, it 
becomes a natural consequence of anything based on 2 interacting 
spacelike structures. The numbers in the table include all the integers, for 
example, which are necessary to describe the Platonic solids in any 
number of dimensions up to 8, for Platonic solids can be considered as 
inhabiting a double space, in which one structure can be thought of as 
inhabiting the observed space, and the dual structure as inhabiting an 
unobserved dual space. Exactly the same numbers appear to be significant 
in describing the genetic code, which previous work has shown as being 
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based on geometric structures related to the Platonic solids (Hill and 
Rowlands, 2008, 201la and b). · 

The rewrite system in fundamental physics 

The universal rewrite structure seems to be applicable, in general, to 
self-organizing, self-governing, self-replicating systems. In physics at an 
even more fundamental level than the structures of particles, it manifests 
itself as the generator of the fundamental parameters, mass, time, charge 
and space, as these emerge at successive levels of the algebra: 

(1, -1) mass scalar 1 
(1, -1) X (1, i1) time trivector i 

= pseudoscalar 
(1, -1) X (1, i1) X (l,jl) charge bivector i j k 

= quaternion 
(1, -1) X (1, i1) X (1,jl) X (1, lz) space vector i j k 

We can imagine the structure continuing to infmity as with algebra and 
arithmetic, but the repetition allows us to choose the fourth level in such a 
way that a zeroing occurs at this level, and occurs automatically thereafter 
at all higher levels. In a way it is analogous to the process of the rewrite 
structure itself, as well as being generated by it. A, B, etc. could be 
commutative or anticommutative. Commutative relations can be 
organized an infinite number of times. Anticommutative relations 
between A and B exclude any other term except AB, and so are reduced to 
a finite number. Significantly, complex numbers, in the rewrite process, 
emerge simply as incomplete quaternion sets, a fact which affects the 
nature of the physical quantities with which they are associated. 

The universal rewrite structure, as applied to physics at this most basic 
level generates the successive parameters, with their algebras and 
subalgebras: 

mass 
time 
charge 

space 

scalar 
pseudoscalar 
quatemion 
= pseudovector 
= bivector 
vector 
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algebra subalgebras 
1 
i 1 
i j k 1 
= ii ij ik 1 

i j k i j k i 1 
=i j k ii ij ik i 1 



The first three have the structure of subalgebras of the last. The physical 
properties can be derived from the algebraic ones. 

A group. of order 4 

The key result for deriving significant consequences from this 
algebraic structure is the symmetry relation which it generates between 
the four parameters. This has the structure of a Klein-4 group or D2. It 
appears to be absolutely exact and has withstood all challenges since it 
was first proposed. It is based on the principle that each parameter has 3 
defming properties I antiproperties, which can be thought of 'physically' 
in a variety of different ways, but which are ultimately pure expressions 
of the algebraic terms by which they are described: 

mass conserved real continuous 
identity norm 1 nondimensional 
translation asymmetric commutative global 

time nonconserved imaginary continuous 
no identity norm-1 nondimensional 
translation symmetric commutative global 

charge conserved imaginary discrete 
identity norm-1 dimensional 
translation asymmetric anticommutative local 
rotation asymmetric 

space nonconserved real discrete 
no identity norm 1 dimensional 
translation symmetric commutative local 
rotation symmetric 

The real I imaginary and commutative I anticommutative distinction 
are obviously purely algebraic, but even the conserved I nonconserved 
one seems to be attributable to the fact that nonconserved quantities, 
unlike conserved ones, incorporate incomplete quaternion sets. At this 
level, it would appear that physics is not only described by algebra but 
actually is algebra. The properties I antiproperties may also be 
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conveniently represented using more conventional algebraic symbolism, 
for example: · 

mass X y z 
time -x -y z 
charge X -y -z 
space -x y -z 

In algebraic terms, this is a conceptual zero. Physically, it produces a 
set of parameters that can produce a dual to the only measurable quantity: 
space. In principle, any one of the parameters can be seen as the dual of 
the other three (and any two as the dual of the other two). 

time 
mass 
charge 

from 
from 
from 

space, 
time, 
time, 

charge, 
space, 
space, 

mass 
charge 
mass 

However, space is the only parameter that we can physically measure and 
so this allows us to make a division between an 'epistemology' of 
measurement and an 'ontology' created by the other parameters. Also, the 
other three parameters cumulatively create the algebra of space. 

In fact, the first three parameters produce a combined vector-like 
structure, even though there is no physical vector quantity associated with 
them. 

mass 
time 
charge 

COMBINED 
STRUCTURE 

scalar 
pseudoscalar 
quaternion 
= pseudovector 
=bivector 

vector 

1 
i 
i j k 
ii ij ik 

ij k 
ij k 

1 
1 
1 

i j k i 1 
ii ij ik i I 

Physically, this combined structure becomes a dual to space - an 
'antispace'. So, we have 

i j k SPACE 

Alternatively, we can derive the vectors from a combination of: 
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il iJ iK CHARGE 

i +TIME 

1 +MASS 

I J K =ANTISPACE 

Taken together, the space and the antispace structures produce the zero 
totality required without taking the rewriting to inftnity. All higher 
structures are then automatically zeroed. Duality comes built into the 
system. Combining 

with 
ij k 
IJK 

ijk 
il iJ iK 

i 
i 

1 
1 

allows the immediate zeroing which produces singularity, and the 5-fold 
symmetry-breaking which produces chirality. 

The vector algebra of 3-D space 

The vector units, i, j, k, i, are effectively complexifted quaternions (i1) 
= i, (i.J) = j, (ik) = k, (i1) = i, and follow the multiplication rules: 

i2 =i = k2 =-i ijk=1 
ij = -ji = ik 
jk =-kj = ii 
ki .k .. =-I = lj. 

They are isomorphic to Pauli matrices. If we complexify this algebra, we 
revert to quaternions, so (ii) = i, (ij) = j, (ik) = k, etc 

The vectors in this algebra have a full (algebraic) product ab = i.b + i a 
x b, from which all the rules concerning unit vector multiplication may 
be derived. Terms like ii, ij, ik are pseudovectors (e.g. area, angular 
momentum) and i is a pseudoscalar (e.g. volume). For comparison, the 
four quaternion units, i,j, k, 1, follow the multiplication rules: 
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;2 = l =JC = ijk=-1 
ij= -ji= k 
"'k k" • J =-f]=J 
k • "'k • 1 =-1 = J. 

The full Clifford algebra of3D space requires: 

i j k vector 
ii ij ik bivector - pseudovector 
i trivector - pseudoscalar 
1 scalar 

- ql.J.atemion 

Pseudovectors and pseudoscalars give us areas and volumes, etc. The 
intrinsic complexification produces a kind of 'doubling' of the elements. 

I J K vector 
ii iJ iK bivector - pseudovector - quatemion 
i trivector - pseudoscalar 
1 scalar 

Here, we are saying here is that this is a composite quantity, made from 
everything in the physical world that isn't space -mass, time, charge. 

If we combine the two algebms commutatively in a tensor product, or 
alternatively take the algebraic product of the eight base units, 1, i, j, k, i, 
I, J, K, we obtain 64 terms, which are + and -versions of: 

i j k ii ij ik i 1 
I J K ii iJ iK 
ii iJ iK iii iiJ iiK 
ji jJ jK iji ijJ ijK 
ki kJ kK iki ikJ ikK 

We can describe this as a double vector algebra or a double Clifford 
algebra of 3D space. 

Alternatively, we can take the algebraic product of the four quatemion 
units, 1, i, j, k, and the four vector units i, i, j, k, to obtain + and -
versions of: 
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• . k . . .. ik i 1 ' J II lJ . 
j k ii ii ik I .. .. ik ... ... iik u ll III llJ .. .. jk ... ... ijk Jl .II IJl I.IJ 

ki kj kk iki ilrJ ikk 

This is exactly isomorphic to the previous algebra and can be described as 
a vector quaternion algebra. 

A third version of the same algebra could be obtained by 
complexifiying the algebraic product of two commutative sets of 
quaternion units 1, i,j, k, and 1, I, J, K. This algebra has + and -versions 
of: 

i . k .. .. ik i 1 J II lJ 
I J K ii iJ iK 
ii iJ iK iii iiJ iiK 
jl jJ jK ijl ijJ ijK 
ki kJ kK ikl ikJ ikK 

This can be described as a complexified double quatemion algebra. 
We now have three completely isomorphic algebras. The units form a 

group of order 64, with a minimum of 5 generators. Their physical 
significance is that they are also isomorphic to the gamma algebra of the 
Dirac equation, based on 4 x 4 matrices. In fact all possible gamma 
matrices can be derived from the products of two commuting sets of Pauli 
matrices, say a1, 0'2, a 3 and :Et. :E2, :E3. Relativistic quantum mechanics, it 
seems, requires a dual vector space. 

We can choose the 5 generators of the group in many different ways. 
From the 60 elements other than + and - 1 and i, we can choose 12 sets of 
5 generators at any one time. 

. j* k . . . . ik* i 1 l ll lJ 
i . k .. ii ik J II 

ii* .. ik ... ... iik ll IU llJ 
ji" .. jk ... ... ijk .II lJI l.IJ 
ki" lrJ kk iki ilrJ ikk 

All the sets of 5 which contain the 8 base units have exactly the same 
structure. (It is, of course, possible to generate the algebra using i, j, I, K, 
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i or i, j, i, j, i, or even i, j, I, K, i, where some of the base units and 
component alphabets would be hidden.) 

The 5 generators of the group can be matched to the 5 gamma matrices 
in a number of ways, for example: 

·l = ji -(=ki y=ij 

There are many ways of doing this but the overall structure is always the 
same. Always one of the two 3-dimensional structures ends with its 
symmetry preserved (here, the vectors) while the symmetry of the other is 
broken (here, the quaternions). 

Physically, what we are doing here is to create new physical quantities. 

time space mass charge 
i i j k 1 ijk 

become 
energy momentum rest mass 

ik ii ji ki . 
J 

as we combine aspects of the original time, space and mass with one each 
of the three 'dimensions' of charge, also breaking the symmetry between 
these in the process. 

Charge also changes in the combination as well as time, space and 
mass. The changes to charge give us the symmetry-breaking of the 
Standard Model. 

ik 
weak 
SU(2) 

pseudo scalar 

Returning to 

energy 
ik 
E 

ii ji ki 
strong 
SU(3)" 

vector 

momentum 
ii ji ki 
PxPyPz 

j 
electric 
U(l) 

scalar 

rest mass 
j 
m 

we see that the characteristic of the new parameters are determined by the 
algebraic operators, not the coefficients (E, Px. pY> p., m), which are 
merely scalar multiples. 
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Nilpotent quantum mechanics 

All we need to do now is to write down the combined structure 
incorporating the 5 generators and recognise that to detennine that it is a 
structure representing all of physical reality, it must be a nilpotent. That 
is, 

(ikE+ iipx + ijpy + ikp, + jm) (ikE+ itpx + ijpy + ikpz + jm)= 0 
or 

(ikE + ip + jm) (ikE+ ip + jm) = 0. 

Multiplying this out gives us Einstein's energy-momentum equation: 

If we apply a canonical quantization procedure to the frrst bracket in 
the squared expressions, to replace the terms E and p by the operators E 
--+ ia I at, p --+ - iV (with units where n to 1), and assume that the 
operators act on the phase factor for a free fermion, e -I(Et- p.r\ we obtain 
the nilpotent Dirac equation for a free fermion: 

( +k! +iiV + jm }±ikE+ip + jm ~-t(a-p.rl =0 

If we use a multivariate vector for the p or V term it automatically 
includes spin (through the extra x term in the full product) (Hestenes 
1966). So, here, pis interchangeable with cr.p and V with cr. V. 

Nilpotent quantum mechanics produces all the standard results of 
conventional relativistic quantum mechanics, which can easily be 
obtained by replacing 

(
oa ,a ,8 ,a·) 0 r 81 + r ax + r ~ + r 8z +1m rp = 

with -irs(ro ~+r'_£_+r'_£_+r' ..£._+im) rp=O at ax ~ az · 
but it also produces many new results- which are not accessible by 
conventional methods. The expression 

(±ikE± ip + jm) (±ikE± ip + jm)---+ 0 

can be used in a flexible way in which the terms in the brackets are either 
operators or amplitudes, to give the classical expression, the Dirac 
equation, Klein-Gordon equation, or a combination of fermion and 
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vacmun. All expressions for fermions in any state, subject to any number 
of interactions, can be reduced to this form. 

Since physics is only concerned with fermions and their interactions 
(bosons), this means, in principle, that the only information necessary to 
define physics on a fundamental basis is that provided by the two 'spaces' 
whose units are 

ij k and IJK 

Every physical variable or conserved quantity is merely defined by a 
coefficient applied to the units of one 'space' or another, or their 
combination. In effect, the physics of fermions is reduced to the 
mathematics of defining a real point in space by invoking a dual space. 

Local and nonlocal 

Nilpotent quantum mechanics (NQM) gives us a very precise 
definition of the boundary between local and nonlocal, defined effectively 
by the two 'spaces'. It must, of course, be relativistic, as the Lorentzian 
space-time or energy-momentum connection is needed to defme the local, 
and without a proper account of the local, we cannot specify what we 
mean by nonlocal. 

In principle, when we define a fermion using a nilpotent operator, we 
also create a description of the universe, for the rest of the universe 
becomes the vacuum which would make a zero total. The key aspect of 
NQM, is the fact that an operator of the form (ikE + ip + jm) 
automatically generates a phase term on which it operates to produce a 
nilpotent amplitude of the form (ikE+ ip + jm), that is, one that squares 
to zero. We don't really need an equation. 

The fermion needn't be free. We can incorporate field terms or 
covariant derivatives into the operator, with, for example, E ~ io I at + 
efJ + ... , and p ~ -iV + eA + ... We can still represent the operator as 
(ikE+ ip + jm), but the phase term will no longer be e-t(Et-p.r). It will be 
whatever is needed to create an amplitude of the general form (ikE + ip + 
jm), which squares to zero, with the eigenvalues E and p representing 
more complicated expressions that will result from the presence of the 
field terms. 

In NQM the total structure of the universe is exactly zero. Pauli 
exclusion, a fundamentally nonlocal phenomenon, is an inunediate 
consequence. If we imagine creating a fermion wavefunction of the form 
lfl! = (ikE + ip + jm) from absolutely nothing; then we must 
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simultaneously create the dual term, ljl.=- (ikE+ ip + jm), which negates 
it both in superposition and combination: 

lf/j+ 'lfv =(ikE+ ip + jm)- (ikE+ ip + jm) = 0 
V'f'llv =-(ikE+ ip + jm) (ikE+ ip + jm) = 0 

As the Klein-4 group connecting the parameters may suggest, 'local' 
and 'nonlocal' are more general terms than would be suggested by 
confming them to quantum mechanics. It is interesting, here, to compare 
the arithmetical processes of addition and multiplication. The addition A 
+ B provides a global or single connection between A and B. The 
multiplication A x B makes this a local or multiple connection. Every 
single part of which A is or can be composed is connected to every single 
part of which B is or can be composed. Because both local and nonlocal 
descriptions are always needed, addition and multiplication are often 
needed simultaneously, as are doubling and squaring. Often they are 
versions of the same process. 

The nilpotent structure immediately gives us a formal way of 
separating the local from the nonlocal. The bracketed term representing 
the fermion creation operator or wavefunction determines how 
conservation of energy applies to that fermion, as squaring the 
wavefunction and equating to zero gives us back the energy-momentum 
equation, and, of course, it is local, as the required Lorentzian structure is 
intrinsic. However, the addition and multiplication of nilpotent 
wavefunctions construct the nonlocal processes of superposition and 
combination, and these processes do not require a Lorentzian structure. In 
effect, anything inside the fennion bracket is local and anything outside it 
is nonlocal. 

We have identified the dual term as the vacuum appropriate to that 
fennion state, in principle, the rest of the universe needed to maintain a 
fennion in that particular state. Pauli exclusion then tells us that no two 
fermions can have the same quantum numbers because the combination 
state would be zero. It also implies that no two fermions can share the 
same vacuum. Vacuum is intrinsically nonlocal. Because the fermion is 
localized, then the rest of the universe is necessarily nonlocalized. If the 
fermion is a point, as experiments suggests that it may be, then the rest of 
the universe is defmed as everything outside that point. So the nonlocal 
connection which makes Pauli exclusion possible can be thought to occur 
through the vacua for each fermion. 
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The nilpotent structure clearly demands a holistic approach to physics. 
When we write dovm. an operator or amplitude in the form(± ikE± ip + 
jm), the brackets may suggest that we have created a closed system, but in 
fact theE and p terms may contain an unlimited number of potentials. We 
have created a system but it is open. Closure or energy conservation is 
only maintained over the entire universe, and requires the second law of 
thermodynamics as well as the flrst. So, though the bracket may defme 
locality, locality does not imply a closed system. 

The components of the NQM spinor 

As we have seen in earlier presentations (summarised in Rowlands, 
2007), 4 simultaneous solutions are required for the waveftmction: 2 for 
fermion I antifermion x 2 for spin up I spin dovm.. Rather than a 4 x 4 
matrix differential operator and a column vector waveftmction, we use a 
row vector operator and a column vector waveftmction, each of which 
may be represented in abbreviated form by (± ikE± ip + jm). In the 
nilpotent formalism, the four solutions can be represented as, say: 

(ikE+ ip + jm) 
(ikE- ip + jm) 
(-ikE+ ip + jm) 
(-ikE- ip + jm) 

fermion spin up 
fermion spin dovm. 
antifermion spin dovm. 
antifermion spin 

Negative energy, as we have argued elsewhere (Rowlands, 2007), 
represents vacuum rather than the local quantized state, and the apparent 
disparity between matter and antimatter in the universe is really a result 
of the fact that, as in the four-component Dirac waveftmction, one set of 
states exists in obervable real space, and the other in an unobservable 
'vacuum space', as required by zero totality. The dual nature of± i is also 
a factor in creating the existence of two states of helicity. Once we have 
decided on a sign convention for p, the spin state of the particle (or, more 
conventionally, the helicity or handedness a.p) is determined by the ratio 
of the signs of E and p. So ip I ikE has the same helicity as (- ip) I (-ikE), 
but the opposite helicity to ip I (-ikE). 

Negative energy also corresponds to reversed time. When we specify a 
fermion state as existing in real space, we are effectively specifying the 
corresponding antifermion state as existing simultaneously in vacuum 
space. This unobservable state operates in reverse time and with the 
opposite causality. In principle, the vacuum state which would 
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completely cancels the fermion state contains the fermion's entire future 
causality at any instant; but this does not require us to accept 
determinism, because our ability to defme this causality is limited by our 
ability to define backward causality by making a measurement. 

The observed particle state in any specification of 4 simultaneous states 
in the spinor is the first in the column, while the others are the 
accompanying vacuum states, or states into which the observed particle 
could transform by respective P, T and C transformations: 

P i(ikE+ip+jm)i=(ikE-ip+jm) 
T k (ikE+ ip + jm)k= (-ikE+ ip + jm) 
C -j(ikE+ ip + jm)j= (-ikE-ip + jm) 

Replacing the observed fermion state spin up with any of the others 
would simultaneously transform all four states by P, Tor C. It is often 
convenient to specifY just the frrst term, with the others assumed to be 
automatic consequences. 

Among the most important results which are seemingly unique to 
NQM are the descriptions of three different boson-type states, which are 
combinations of the fermion state which any of the P, Tor C transformed 
ones, the result being a scalar wavefunction. 

(±ikE ±ip + jm)(+ikE± ip + jm) 
(±ikE± ip + jm) (+ikE +ip + jm) 
(±ikE± ip + jm) (±ikE +ip + jm) 

spin 1 boson 
spinO boson 
fermion-fermion 

One of the most significant aspects of this formalization is that a spin 1 
boson can be massless, but a spin 0 boson cannot, as then ( ± ikE ± ip) 
(+ikE + ip) would immediately zero: hence Goldstone bosons must 
become Higgs bosons in the Higgs mechanism. Another way of looking 
at this is to say that the fermion and antifermion cannot both be purely 
left-handed (or both purely right-handed) - or massless - and act via a 
weak interaction to produce a bosonic state. 

(ikE+ ip) LH fermion 
(- ikE- ip) UI antifennion 

This chirality is a direct consequence of the structure of the Dirac 
equation even in the conventional formalism, but is an immediate 
consequence of the nilpotent version. A spin 1 boson, structured as 
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(ikE+ ip + jm) (-ikE+ ip + jm) 
LH fermion RH antifermion 

can be massless as (ikE + ip) (- ikE + ip ), but, with a spin 0 boson, 
structured as 

or 

(ikE+ ip + jm) (-ikE- ip + jm) 
LH fermion LH antifermion 

(ikE- ip + jm) (-ikE+ ip + jm) 
RH fermion RH antifermion 

one half or the other (as italicised) is not weakly interacting, which forces 
it to acquire mass -possibly maximally in the case of the Higgs boson. 

We can also devise structures for baryons, by separating out three 
components of p in the form 

(ikE± iipx + jm) (ikE± ijpy + jm) (ikE± i'kpz + jm) 

We then have a nonzero combination. Spin is defmed in only one 
direction at a time, so, at any given instant, the wavefunction will reduce 
(after normalization) to 

(ikE + iipx + jm) (ikE + jm) (ikE+ jm) ~ (ikE+ iipx + jm) 
(ikE+ jm) (ikE+ ijPy + jm) (ikE+ jm) ~(ikE- ijpy + jm) 
(ikE+ jm) (ikE+ jm) (ikE+ ikpz + jm) ~(ikE+ ikpz + jm) 

The change of sign in the second case is significant. 
This leads to baryonic structure. Since we need to maintain the 

synunetry between the three directions of momentum, there will be six 
possible outcomes, using both+ and -values of momentum terms, that is, 
a superposition of six combination states: 

(ikE+ iipx+ jm) (ikE+ jm) (ikE+ jm)~(ikE+ iipx+ jm) 
(ikE- iipx + jm) (ikE + jm) (ikE + jm) ~ (ikE- iipx + jm) 
(ikE+ jm) (ikE+ ijpy + jm) (ikE+ jm) ~(ikE- ijpy + jm) 
(ikE + jm) (ikE - ijpy + jm) (ikE + jm) ~ (ikE + ijpy + jm) 
(ikE +jm) (ikE+jm) (ikE+ ikpz+ jm)~ (ikE+ikpz+ jm) 
(ikE+ jm) (ikE+ jm) (ikE- ikpz + jm) ~(ikE- ikpz + jm) 
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Vacuum and the separation of local and non local 

The creation of the fermion state is the creation of a local region in 
phase space, to which everything else becomes nonlocal; the creation of 
the two regions is simultaneous. Any subsequent change inside the 
bracket (a rewriting of the structures of E and p) also affects everything 
else outside it, and vice versa. 

Nilpotent quantum mechanics shows there is no such thing as an 
isolated system, and so a complete local description, which originates in 
the individual particle, still requires knowledge of the contents and 
disposition of the whole universe. Using nilpotent version of quantum 
mechanics, it is possible to show that both the local and nonlocal aspects 
of the strong, weak and electric interactions contribute to their special 
characteristics. 

In principle, the difference between local and nonlocal is not in the 
phenomena they describe, but in the method of description, essentially 
whether we use an iterative or recursive computational paradigm. Local 
interactions are determined by the collective nonlocal effect of the rest of 
the universe. Gravity has a special significance among the four known 
interactions, in this respect, in providing the most directly observable 
aspect of nonlocality. Its negative energy marks it out as a nonlocal 
vacuum property, the source of instantaneous quantum correlation. The 
nonlocal character immediately leads to a prediction of dark energy. 

In the nilpotent formalism, the vacuum can be structured, directly 
reflecting that of matter. If we take(± ikE± ip + jm) and post-multiply it 
by the idempotent k(± ikE± ip + jm) any number of times, the only effect 
is to introduce a scalar multiple, which can be normalized away. 

(±ikE±ip + jm)k(± ikE±ip + jm) k(± ikE±ip + jm) ... 
~ (± ikE±ip + jm) 

The same thing happens withj(± ikE± ip + jm) or i(± ikE± ip + jm), the 
extra vector terms produced in the latter case cancelling each other out 
after every other bracket. 

The three idempotent terms have the mathematical characteristics of 
vacuum operators. They also correspond to the respective transformations 
of alternate brackets by T, C and P, or to the production of the spin 1, 
spin 0 and fermion-fermion bosonic states. The character of the original 
fermionic state remains unchanged, while vacuum versions of the three 
bosonic states are created. 
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In principle, the quatemionic operators k,j, i, like T, C and P, which 
are associated respectively with E, m and p, split the continuous vacuwn 
into discrete units, and we can to some extent regard these units as the 
respective 'charges' or sources of the weak, electric and strong 
interactions, acting to create the vacuum necessary for these forces to act 

What this means is that the quatemionic operators k, j, i, effectively 
define the axes of a vacuum space, dividing it into parts which respond 
respectively to the weak, electric and strong sources or 'charges', and that 
they can also be used to represent these charges. The swn total, the 
continuous vacuum that exists before we impose the '3D' structure upon 
it, responds to the force we know as gravity. String theorists have a name 
for this connection - gravity I gauge theory correspondence. In effect, the 
gravitational response acts like the totality of the three gauge forces but in 
a negative sense (negative energy), as was apparent from the beginning in 
this theory. 

I have referred to the vacuum space in various ways over the years 
because different aspects of it reveal different characteristics. Vacuwn 
space refers to the fact that the 3 axes represent a partitioning of the 
vacuwn. Charge space refers to the fact that it separates out the 3 
components of charge - electric, strong and weak, and through its 
combination with ordinary space gives them the U(l), SU(3) and SU(2) 
characteristics - their character as symmetries of 3-dimensioitality are 
evidence that they can't be explained by enlarging space to higher 
dimensions. Antispace refers to the fact that it is the dual to ordinary 
space, effectively zeroing it in fennion creation. 

Duality and the nilpotent structure 

The two 'spaces', though seemingly different, are truly dual, each 
containing the same information, and the duality manifests itself directly 
in many physical forms. 

Pauli exclusion by antisymmetric wavefWlctions 
Pauli exclusion by nilpotency 

uses i, j, k 
uses I,J, K 

Both sets of coordinates yield information about the same physical 
quantity: angular momentum. 

spin !6 from anticommuting aspects of p components 
spin !6 using Thomas precession (relativity) 
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velocity addition law from 2 D of space 
same using relativistic space-time 

holographic principle- bounding 'area' defmed by 
two spatial coordinates 
or one of space and one of time 

Pauli exclusion by antisymmetric wavefunctions 
but by nilpotency 

uses i, j, k 
uses I,J, K 

uses i, j, k 
uses i, j, k 

uses i,j, k 
uses I, J, K 

We can give the last case as an example. Using antisymmetric 
wavefunctions, we find: 

(IJ!i lf/2-lf/21f/l)=-(lf/21f/I-If/llf/2) 
=(±ikE I± ipi + imt) (± ikE2± iP2 + jm2) 
- (± ikE2 ± ip2 + jm2) (± ikEt ± ipi + jmi) 

= 4piP2 - 4pzpi = 8 i PI x Pz =- 8 i P2 x PI 

In real space, p must have a unique direction. At the same time, for a 
nilpotent wavefunction: 

and so the 'space' created by the 'axes' of E, p, m ('antispace') must be 
unique. Both spaces record a unique instantaneous direction for the spin 
axis of any fennion. 

Interestingly, the paired 'spaces' that are used in conventional theory­
ordinary space and momentum space - are not commutative or truly 
independent as these two are, because momentum space is partly 
constructed from ordinary space. Heisenberg uncertainty is a consequence 
of this noncommutativity. 

The nilpotent structure reveals the fundamental duality by creating a 
zero normed combination from the two spaces. Physically it manifests 
itself at a point, a region of zero space. In principle also, by gravity I 
gauge theory correspondence, and the vacuum annihilation of the total 
energy and momentum in the Dirac spinor, it creates a zeroing also in the 
dual space. 
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Paull exclusion 

real space vacuum space 

spin direction 
ip 

spin direction 

antisymmetric wavefunctions nilpotency 

Singularity and chirality 

We can see that singularity is actually a result of duality. To 
understand this, we can use a reverse argument from topology. In 
topology, a singularity creates a multiply-connected space within a loop 
and a vector parallel transported around that loop needs a double circuit 
to arrive back at its starting position pointing in the same direction. We 
have to do a double circuit when we have a particle. A point is created by 
the simultaneous zeroing of two spaces. 

simply-connected space multiply-connected space 
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A classic example of this · is the electron which exists in its own 
multiply connected space, and hence has spin ~- As we have seen, of 
course, the electron exists simultaneously in two spaces, only one of 
which is observable. Physically, this manifests itself in the electron 
having a rest mass - the mass being the result of the zitterbewegung that 
results from the continual switching between the real particle and its 
vacuum state. This is, in fact, a property of all fermions - all of which 
have the discrete rest mass. 

Everywhere, we see the factor 2 or ~ in physics, it is ultimately 
because everything exists simultaneously in 2 spaces. Every electron 
exists in space, but has a vacuum partner which is an antielectron in 
'vacuum space', and switches between them. This is why the electron has 
spin ~; the other ~ is in vacuum. It is why we normally only see matter, 
not antimatter. But, in fact, it also suggests that, to create a singularity, we 
need two spaces. 

However, the fact that only Vz of the electron's spin is ever manifested 
in real space means that the electron's properties are chiral, as well as 
singular, as we know from the Dirac equation. Zitterbewegung and the 
Higgs mechanism are ultimately the same mass-generating process. To 
create a singularity from two spaces using a nilpotent (norm 0) structure 
means, as we have seen, that, from an observational point of view, the 
spaces are not equally symmetrical. Intimately, the zeroing also means 
that the iE, p and m terms don't have an equal range of+ and- values. 

Further thoughts on the Higgs boson and fermion masses 

The discovery of the Higgs boson was armounced at CERN on 4 July 
2012. The approximate mass of the particle appeared to be in the region 
125 to 126 Ge V, though some later measurements suggest that it might be 
slightly lower, perhaps closer to last year's prediction of around 123 GeV 
(Rowlands, 2012), based on the idea that the creation of Higgs requires 
approximately half of the vacuum expectation energy (246 Ge V). 
Possibly the halving might refer more specifically to the mass realisation 
of the electroweak bosons W, w-, tJ and y, which total 2 x 126 = 252 
GeV. 

The coupling of the Higgs to the fermions to give them their observed 
masses is the least satisfactory aspect of the Standard Model, and there is 
no fully consistent theory. A significant problem appears to be in defining 
the weak hypercharge. The two quantum numbers associated with the 
SU(2) of the weak interaction are weak hypercharge and weak isospin. If 
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we take the electron neutrino and electron as an SU(2) doublet, both 
particles have the same hypercharge, which is defined as 2 x the average 
charge of the doublet in units of e. 

electron neutrino charge 0 weak hypercharge -1 
electron charge -1 weak hypercharge -1 

The thing that distinguishes them is weak isospin, which is !h for the 
neutrino and -Vz for the electron. 

Before it was established that neutrinos have masses, it was possible to 
fmd the mass of a member of an SU(2) doublet by a Higgs coupling 
similar to that for the Wand Z bosons. However, for two members of a 
doublet, we need two hypercharge numbers, 1 and -1. Standard theory 
says that electrons and neutrinos have the same hypercharge, but, if 
neutrinos are Mqjorana particles (i.e. their own antiparticles), then, in 
certain circumstances, they would have two possible hypercharge 
numbers, 1 and -1. The probability of this occurring would relate to that 
of CP violation and so be relatively low. Hence we would expect 
neutrinos to have small masses. 

Quarks represent a different problem, because, according to 
conventional theory, up quarks have charge 2/3 and down quarks have-
1/3, in units of e, so creating a hypercharge for all quarks of 2/3. 
However, if we suppose that the underlying structure reflects that of the 
colours, then the three options become (in units of e): 

up 1 1 0 
down 0 0 -1 

So creating two hypercharge numbers of 1 and -1, exactly as required, 
and these can apply to either up or down quarks. 

I have previously argued that this underlying structure for quark 
masses has many advantages, besides solving the Higgs problem: it 
avoids the arbitrariness of having three fundamental charge units: 2e/3, 
e/3 and e; it creates Grand Unification at the Planck mass and sin2Bw= I; 
it creates an exact parallel between the charge structures of quarks and 
leptons; and it suggests how the perfect gauge invariance of the strong 
interaction operates (Rowlands, 2007). We have an exact parallel of 
emergent fractional charges of this kind in the quantum Hall effect, where 
a single electron can simultaneously be associated with 3 magnetic flux 
lines, creating effective charges of e/3 in value. 

I have also previously represented the charge structures of quarks and 
leptons in 3 + 1 tables, where the fourth table included left-handed 
antileptons as an equivalent to the missing additional 'colours' 
(Rowlands, 2007). This suggests that the group symmetry has the right 

256 

-- -----;--;--------~ ~ 



\ \ 

structure to incorporate Majorana behaviour in the neutrino sector. How 
the individual fennions couple to the Higgs boson to produce the 
particular masses they have has been a problem for a long time. The key 
to a solution probably lies in the idea that the Higgs only couples to a 
particle interacting with another field. 

The electron, lightest neutrino and lightest quark masses are probably 
derivable from the respective electric, weak and strong coupling 
constants, a, a2, a 3, via a version of the holographic principle. (These 
particles are asterisked in the table of particle masses in MEV, below.) 
(Rowlands, 2011) The increasing masses of quarks from d to s to b seem 
to be in proportion to the weak coupling constant, iX2. as might be 
expected. Also as expected, the masses of quarks s and b seem to relate to 
those of 11 and r in proportion to the running value of the strong coupling 
constant, a3• The mass of the top (indicated by t) may represent the 
maximum possible coupling to the Higgs field if I .../2). 

u 1.5-3.3* Ve 0.00013* 
ta. d 3.5-6.0* e 0.511* 

c 1,160 t a.2 
-1,340 

ta. s 70-130 /1 105.7 

t 169,100 t a.2 
-173,300t 

b 4,130 r 1,777 
-4370 

The relationships with the masses of the other quarks u, c, t requires 
further investigation, although there are some indications that the 
generations are related through the electric coupling constant, a. The 
masses of all fennions are a measure of their degree of right-handedness. 
Each increase in mass requires a new mechanism for an increase in the 
right-handed component of helicity. In leptons, for example, the 'down• 
state of weak isospin is more massive than the 'up • state, because there is 
now an electric charge, which responds to both left- and right-handed 
components. In quarks, except for the first generation, this is outweighed 
by other effects. One way of increasing the right-handed component is by 
a direct symmetry violation, and, between generations there is a 'step 
function' in right-handedness due to the successive introductions of parity 
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violation (in the second generation) and time-reversal violation (in the 
third). In their physical effeCts, these two symmetry violations are 
difficult to distinguish, and the real distinction may be between one and 
two symmetry violations. It may be because the neutrino responds only to 
the weak interaction that there is maximal ( ~ 45") mixing between the 
muon and tau neutrinos. Neutrino masses have not yet been measured 
beyond very wide limits, and the value given in the table for the electron 
neutrino is a prediction rather than a measurement. The neutrino sector 
remains the least understood aspect of particle physics. 
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