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Abstract

Classical spacetime appears so directly from Einstein’s two postulates that it ap-
pears to have a strong physical basis. However, it misses quantum mechanics,
suggesting the ‘physical basis’ is somehow at odds with quantum mechanics. De-
spite this, classical spacetime has features in common with quantum mechanics
and we investigate the connection by studying a model clock.

1. Introduction

Kronecker, has been credited with the saying that “God created the integers,
all the rest is the work of man.” From the perspective of measurement, he has a
good point. The quantitative aspects of science at best use a very small subset
of the rational numbers. Experiments extracting a dozen significant figures are
rare and measuring hundreds of significant digits is beyond our capabilities in any
direct physical context. In a universe with a finite number of objects, the repre-
sentation of even a single real number with an infinite number of non-repeating
decimal places is impossible. Ultimately, in the physical universe, Real numbers
are not real. They are a mathematical convenience that allows us to avoid the
tedious bookkeeping required by discrete models. To give them up, however, is
unthinkable. It would rob us of the most powerful modelling language we have,
the differential calculus.1

Like powerful machines, powerful languages are useful in many contexts, but
can be a nuisance in situations where some delicacy is required. A bulldozer may
be useful in clearing an archaeological site, but a trowel and paintbrush are more
useful for finding, cleaning and classifying artifacts. Similarly the calculus is useful

1See however Kauffman’s intriguing work on discrete forms of physical laws[1].
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when all the relevant physics happens on scales above a certain threshold, but can
be a liability if there are multiple characteristic lengths, or if Fractals are involved.

The concept of spacetime is a case in point. We can access it efficiently through
Einstein’s two postulates and it is convincing as a concept because the postulates
themselves seem straightforward and unambiguous. It is so convincing in fact that
we might wonder “What is wrong with the two postulates that their invocation
fails to uncover quantum mechanics?” Here, the automatic assumption that Real
numbers are real is a potential suspect. The requirement that particles move on
smooth worldlines violates the uncertainty principle. As suggested by the path
integral approach to quantum mechanics[2], to the extent that spacetime paths
apply to quantum mechanics, they are Fractal with dimension two [3, 4, 5]. Since
the calculus generally misses Fractals it is worth taking some care in noticing how
the spacetime of special relativity appears if we start from a discrete perspective.

2. From Digital Clocks to Spacetime

Since continuous progression through time is suspect, we consider the idea that
a particle is really a small digital clock.2 Our model clock ticks periodically, once
every unit of time (Fig. 1A). The clock mechanism is not specified between ticks,
however notice that in a two dimensional spacetime, the forward and backwards
light cones of each tick are nested and the intersection of these cones forms a chain
of causal areas. We use the term causal in two ways. The clock mechanism that
creates the ticks must be confined to these areas in order to be causal in the usual
sense, with the mechanism being in the past of the subsequent tick and the future
of the previous tick. The regions are also causal in the sense that their Euclidean
areas are a Lorentz invariant[7]. Whatever the clock mechanism, its effect is to
create periodic events by preserving the spacetime area between events, regardless
of the inertial frame in which it is specified. If the events are to be considered
intersections of locally smooth curves, the areas between events are oriented and
their orientation alternates. We call these events ‘audible’ and the audible event
sequence of our clock is the discrete analog of a particle’s worldline. The corners
in the chain of areas that are not audible we call ‘inaudible’. They are not part
of the event sequence that is the analog of the worldline but their positions in
spacetime help determine the invariant areas between ticks.

So far, our clock of Fig. 1 ticks at the integers in the rest frame of the clock. We
shall call this Compton’s clock since if we think of it as a particle, the appropriate
frequency of events is the Compton frequency.

2The following is a development of a talk given at a previous ANPA meeting[6]
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Figure 1: A periodic sequence of events has an associated sequence of forward and reverse light
cones. The intersection of the events and the light cone area between the events sets up a chain
of ‘causal’ areas. If the original events are the intersections of locally smooth curves, the areas
are oriented.

If we are to make contact with conventional special relativity, we need clocks
that can measure time to arbitrary precision, thus allowing us to interpolate be-
tween ticks. To this end we first use Compton’s clock to count events using the
right hand boundary of the chain of areas. To accommodate boosts we need a
two component characteristic function. It needs to be two component because the
clock sequence of ticks has projections on both the left and right light-cones. The
tick frequencies on the cones is the same in the rest frame of the clock but different
in inertial frames moving at constant velocity. Our time measurement must allow
for this.

The mapping from path to characteristic function is shown in Fig.(2). The
state variable sk is a characteristic function for orientation and it takes on one of
four values:

sk ∈ S =
{( 1

0

)
,

(
0
1

)
,

(
−1
0

)
,

(
0
−1

)}
(1)

in succession. If the Compton clock is in state sk at time k then the subsequent
state, after the next event is

sk+1 = Tsk (2)

where T is the transfer matrix:

T =

(
0 −1
1 0

)
. (3)

Since sk = T ks0 the power of the transfer matrix corresponds to the (discrete)
displacement in time.
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Figure 2: We use the right boundary of the chain of oriented areas to construct a two component
state. The upper component registers a ±1 or 0 for the signed projection onto the right light
cone. The lower component registers the left light cone.

To obtain the continuous time of special relativity we need a clock of arbitrarily
high frequency to allow real values of t. We can simply use a sequence of Compton
clocks of ever higher frequency, Fig.3. If Tν is the transfer matrix for the high-
frequency N -clock, synchronized with T , we must have an equivalence between
the N -th power of Tν and T itself. Thus

TNν = T (4)

giving Tν as an Nth root of T or

Tν =

(
cos
(
π
2N

)
− sin

(
π
2N

)

sin
(
π
2N

)
cos
(
π
2N

)
)

(5)

Taking the limit as N →∞ via an eigenvalue expansion we get the transfer matrix

TR(t) = lim
N→∞

TNtν =

(
cos
(
πt
2

)
− sin

(
πt
2

)

sin
(
πt
2

)
cos
(
πt
2

)
)

= I2 cos

(
πt

2

)
+ T sin

(
πt

2

)
(6)

The dependence of TR on real values of t allows us in principle to have access to
reference frame clocks in the rest frame of our original Compton clock. Notice that
TR reproduces the events of the Compton clock at the even integers but interpolates
between the original discrete states via a rotation. To allow for moving frames we
have to adjust the transfer matrix to allow for the two different projections onto
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Figure 3: Contact with continuous time is made by allowing arbitrarily high frequency Compton
clocks to fill in events on the t axis. Note how the area between events decreases as events are
filled in. As the event frequency increases the causal area between events goes to zero.

the left and right light cones Fig.(3 B). The result is[8]

TM(t) =


 cos

(
πt
2γ

)
− vγ sin

(
πt
2γ

)
−γ sin

(
πt
2γ

)

γ sin
(
πt
2γ

)
cos
(
πt
2γ

)
+ vγ sin

(
πt
2γ

)



= I2 cos

(
πt

2γ

)
− γ(vσz + iσy) sin

(
πt

2γ

)
(7)

Here v is the velocity of the moving frame and γ = 1√
1−v2 is the time dilation

factor that just normalizes the ‘vector’ M = γ(vσz + iσy).
It is useful to take stock at this point and compare eqn(6) with eqn(7). New-

tonian mechanics allows an absolute time that is independent of the motion of
the observer. In the case of absolute time, eqn(6) could be used as the reference
clock for all frames and since T is a representation of the unit imaginary, our refer-
ence frame clock would be a translationally invariant unimodular complex number.
There would then be little need to consider the clock aspect of particles since the
argument of TR would not depend on relative speeds and could be reasonably
assumed to be ‘available’ to all particles. This would seem to justify Newon’s ab-
solute time and the segregation of time from space as a separate and independent
coordinate. From the perspective of equation(7), the Newtonian approximation is
achieved by setting v = 0.

In contrast, we see from (7) that with the relativity of simultaneity, space and
time are intrinsically linked. The linkage here is not through the invocation of an
ambient spacetime but simply through the geometry of a sequence of clocks.

In this view, absolute time is only an approximation and instead of a simple
unimodular complex number appropriate for all frames we see the implication of
geometric algebra[9] that allows for moving frames. From the fact that M2 = −I2
we see the origin of the odd signature of spacetime from the fact that spacetime
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Figure 4: (a) A Compton clock at rest provides a chain of spacetime areas. To interpolate between
events we construct higher frequency Compton clocks giving the continuous transfer matrix TR.
(b) In a moving reference frame the areas between events become rectangular, however the area
is preserved and is calculated as the product of the lengths of the two sides of the rectangles.
The effect on the transfer matrix is to weight the residence times of the two states differently.

areas in the plane defined by the t and v axes are invariant. The necessity to
go beyond the single analog clock of Newton to require the Dirac algebra for a
four dimensional spacetime is a direct consequence of the differing frequencies of
clocks on the two lightcones in the reference frame specified by the relative velocity
Fig.(4(b)). The full Dirac algebra is required in three dimensions of space since
we need two more ‘vectors’ in the geometric algebra sense to embed our Compton
clock in three space.

One more feature is worth noting at this point. To arrive at eqn(7) we had
to take an infinite frequency limit of the Compton clock. It is this limit that
establishes the Lorentz covariance of the spacetime frame that we are building
from our digital clock. However, from the perspective of the clock, the reference
frame is an infinite mass idealization. If classical ‘particles’ are simply small clocks
that obey special relativity through geometry, the association of a smooth worldline
with their passage through time will have the same effect. The arbitrarily high
frequency of events implied by the association of ‘event’ with spacetime position
on a smooth worldline is an infinite mass construction. This suggests that to get
to the kinematics of conventional special relativity, we have ‘frozen out’ quantum
propagation with an infinite mass limit. To introduce dynamics into relativity,
mass has then to be reinserted as a background feature. What is wrong with
spacetime is then that it hides a very relevant continuum limit. It is an infinite
frequency construction that excludes quantum propagation by decoupling mass
and frequency.

It seems clear from the above that we have taken an infinite frequency limit
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Figure 5: (A) Compton’s clock. (B) The right hand boundary used to form the characteristic
function for counting (Fig. 2). (C) A stochastic version of (B) used in the Feynman chessboard
model. The orientation of the areas in (A) provide the ‘corner rule’ for Feynman’s model.

that could be expected to eliminate quantum propagation via the quantum zeno
effect. But is it really true that quantum propagation is implicated if we forgo the
infinite frequency limit underlying (7)?

Consider Fig.(5). Compton’s clock and the right hand path used for counting
appear in the first two frames. The third frame is a sketch of a path in which
the distance between the corners is stochastic. If the distribution governing the
distance between corners is exponential and the matrix T provides the statistical
weights of the paths, the resulting model is the Feynman chessboard model. This is
Feynman’s sum-over-paths formulation for the Dirac propagator.[10, 11, 12, 13, 7].

The appearance of Dirac propagation at this point may appear paradoxical. We
have shown that classical spacetime appears as a high frequency limit of Compton’s
clock. The clock construction itself is a simple algorithm for counting and there
has been no quantization procedure that would necessitate interpretation after
the calculation. Mass does not appear as a characteristic frequency in Compton’s
clock since the high frequency limit leaves only the scale of the unit vectors of
the spacetime frame. How then is wave propagation implicated in the chessboard
model when there is none in the limit of Compton’s clock?

From Fig.(5C)we see that the difference between Compton’s clock and the
chessboard model is the stochastic element built in to the causal areas. The Poisson
process that governs the limit allows arbitrarily high frequency but gives a finite
expected frequency at the Compton frequency. The remnant of Compton’s clock
is the ‘zitterbewegung’ that appears in the Dirac equation[14].

Notice that the chessboard limit preserves the indeterminacy feature of the
original digital clock. The rectangular area between two audible events in the
Compton clock is causal in the sense that the clock mechanism is confined to
that area. It is not however confined to the linear interpolant between the two
events; that is the classical spacetime limit. Instead, the chessboard limit allows
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Figure 6: At fixed velocity, the length scale at which the moving clock has lost one tick is the
deBroglie scale.

the clock to tick any integral number of times between the initial and final tick.
The implementation of this allows the enumerative paths of a stochastic clock (the
Chessboard paths) to cover the full causal area between two audible events.

The Dirac propagator implicated by the Feynman paths explicitly show that
there are two characteristic lengths that arise from this picture of particles-as-
clocks. The inner scale is determined by the mass of the particle, the Compton
length. The outer scale is determined by the initial and final events, and presum-
ably boundary conditions if the spatial domain is restricted. This is not however
how conventional non-relativistic quantum mechanics sees quantum propagation.
The Compton scale does not arise in the Schrödinger equation and we might ques-
tion how the wave propagation we see here, so obviously relativistic in origin, could
scale up to the deBroglie length.

The answer is remarkably simple. ‘Moving clocks run slow’ in special relativity
and the length scale at which a moving clock resynchronizes with a stationary
clock after missing a single tick is the deBroglie wavelength (Fig. 6). Using an
analogy with sound, the deBroglie wavelength is simply the beat frequency arising
from the fact that the Compton frequency of the moving clock is slightly lower
than the frequency of the stationary clock due to time dilation. If the geometry
of any confinement of the clock is closer in scale to the deBroglie length than
the Compton length (as it is for example in the case of the electron orbitals of
the Hydrogen atom) the result is that the deBroglie length and period become
‘fundamental’ to the clock. This suggests why the Bohr-Sommerfeld rules provided
such a surprisingly accurate account of the spectral lines of Hydrogen prior to the
advent of modern quantum theory. The quantized angular momentum rules are a
generalization of the synchronization of stationary and moving clocks that lose an
integral number of ticks in an orbit[15, 8].
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3. Conclusions

There are many routes to spacetime and a frequent starting point is to note that

ds2 = dt2 − dx2 − dy2 − dz2 = 0. (8)

regardless of the inertial frame of reference. If we start with (8) we can quickly
invoke spacetime algebra[9] and then bring in mass through dynamics.

From the perspective of Compton’s clock, the convenience of assuming the
continuum limit at the start is offset by the failure to see several features that
illuminate the connection between relativity and quantum mechanics. To make
contact with classical mechanics, note that the Compton clock has event intervals
on the scale of the Compton time. This is well below the scale on which classical
physics routinely holds and if we simply interpolate between ticks and allow very
slight changes in velocity from one tick interval to another, we shall have a piece-
wise smooth approximation to a smooth classical worldline. The intrinsic mass
associated with the clock can be linked to the mass of the particle through the
kinetic energy term without having to resort to dynamics. We would not expect
low energy collisions or chemical reactions to reveal the ‘Compton machinery’ of
the clock for the same reason that Newtonian mechanics does not notice special
relativity. The expansion of the relativistic energy:

E = mc2 = m0c
2 +

1

2
m0v

2 +O((v/c)4) (9)

displays the reason clearly. In the absence of relativistic speeds, nature hides the
first and last terms in this expansion in scales that are hard to measure. The
second term by itself, being independent of c gives no hint of the relativistic time
dilation that actually underlies its presence. Finally, our discrete clock has no
need of a global spacetime to “tell matter how to move”. Our clock moves simply
by the implementation of a local rule requiring equal spacetime areas between
events. Ultimately spacetime and its connection to mass emerges in a reasonably
transparent way from considering Compton’s clock.

The contact with Schrödinger’s equation is more subtle. While the classical
kinetic energy term on the right of eqn(9) can be directly transplanted into New-
tonian mechanics with no other remnant of path dependent time, the transition to
the Schrödinger equation retains a further remnant of time dilation through the
phase dependence of Feynman paths. The formal similarity between the diffusion
and Schrödinger equations becomes clearer in this case. The ‘non-relativistic’ limit
of the telegraph equations give the diffusion equation with its relation to Wiener
paths[16]. The Telegraph equations miss the Lorentz transformation because the
analog of ‘Compton’s Clock’ is not periodic but entropic; it is based on the decay
of correlations. There is no analog of time dilation. However, a carefully placed
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Figure 7: Two continuum limits. The limit indicated to the right of the figure corresponds to the
limit taken for the Compton clock that provides a model for spacetime frames. The ever higher
frequency reduces the spacetime area between the events at t = 0 and t = 6 to zero, ultimately
filling in a linear worldline between the two events. The limit indicated to the left corresponds
the Feynman chessboard model. There the continuum limit allows arbitrarily high frequencies
through the Poisson distribution but the limit has a finite expected frequency that becomes the
mass term in the Dirac propagator. The chessboard limit allows the ‘clock mechanism’ and hence
the Chessboard paths to wander anywhere in the causal spacetime area between the first and
last event. It does not scale down the causal area between observed events, it scales it up.

formal analytic continuation t− > it imitates the rule for invariant spacetime areas
and in the non-relativistic limit produces the Schrödinger equation[17]. The fea-
ture to note here is that the analytic continuation that restores Lorentz covariance
also induces wave propagation! In the particle-as-clock picture, ‘quantum propaga-
tion’ is a relativistic effect that accommodates the path dependent time of special
relativity in the Schrödinger regime. The physical constant “c” does not alert us to
this fact for the same reason that it does not appear in the non-relativistic kinetic
energy in eqn.(9).

This underlying structure, the fact that relativity and quantum mechanics
share a common origin, is missed when we formulate our models directly at the
level of differentials. The view that relativity and quantum mechanics are separate
and need to be married appears here as an artifact of superimposing two differ-
ent continuum limits. The assumption of smooth worldlines invokes an infinite
mass/frequency limit that then has to be ‘undone’ by a quantization procedure.

Since we started this discussion with Kronecker, it seems appropriate to end
with the philosophical descendants of Cantor[18] who embrace Fractals. From a
Fractal perspective, the reason that modern quantum theory admits a differential
formulation at all, relates to the dimensional ‘accident’ that random walk paths
provide a bridge between one and two topological dimensions. This fact underlies
both the Feynman and Wiener integrals, allowing sensible continuum limits from
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difference equations to differential equations (respectively the Schrödinger and
diffusion equations).

We can see an analog of this in the above clock model in reverse. The classical
limit of the Compton clock squeezes the chain of areas onto the t-axis making a
smooth path by reducing the causal areas to zero(Fig.3). Having taken the limit we
are left with a topologically one-dimensional object when in fact the mechanism for
its maintainence is area-based. In contrast, the chessboard limit does not squeeze
out the area between events or force the events onto a smooth worldline. As a result
we are left with a form of wave propagation that leaves room for the uncertainty
principle and wave-particle duality (Fig.7). Spacetime uses a continuum limit to
force a dimensional collapse from area to length while the Chessboard limit does
not. It exploits the fact that random paths can be area-filling.

The direct consideration of dimension as a conceptual and calculational tool
goes back at least to Mandelbrot’s work in the 1970’s[19]. It is well known in
non-linear dynamics and is becoming a regular, if sometimes unwelcome, visitor to
considerations of quantum foundations [4, 5, 20, 21]. The deep philosophical divide
between Kronecker and his pupil that shook the mathematical community in the
nineteenth century, may yet show up as an echo in the foundations of physics in
this century.
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